回答:python入門的話,其實很簡單,作為一門膠水語言,其設計之處就是面向大眾,降低編程入門門檻,隨著大數據、人工智能、機器學習的興起,python的應用范圍越來越廣,前景也越來越好,下面我簡單介紹python的學習過程:1.搭建本地環境,這里推薦使用Anaconda,這個軟件集成了python解釋器和眾多第三方包,還自帶spyder,ipython notebook等開發環境(相對于python自帶...
回答:Python可以做什么?1、數據庫:Python在數據庫方面很優秀,可以和多種數據庫進行連接,進行數據處理,從商業型的數據庫到開放源碼的數據庫都提供支持。例如:Oracle, My SQL Server等等。有多種接口可以與數據庫進行連接,至少包括ODBC。有許多公司采用著Python+MySQL的架構。因此,掌握了Python使你可以充分利用面向對象的特點,在數據庫處理方面如虎添翼。2、多媒體:...
回答:1、web應用開發網站后端程序員:使用它單間網站,后臺服務比較容易維護。類似平臺如:Gmail、Youtube、知乎、豆瓣2、網絡爬蟲爬蟲是屬于運營的比較多的一個場景吧, 爬蟲獲取或處理大量信息:批量下載美劇、運行投資策略、爬合適房源、從各大網站爬取商品折扣信息,比較獲取最優選擇;對社交網絡上發言進行收集分類,生成情緒地圖,分析語言習慣;爬取網易云音樂某一類歌曲的所有評論,生成詞云;按條件篩選獲得...
回答:Python是一門電腦編程語言,而且是學習人工智能的第一語言,相對其他的流行語言python也比較簡單一些。主要學習的內容有web網站開發,游戲開發,爬蟲,數據分析,大數據,智能等各方面的內容,就業也是面向這些崗位,是以后的大趨勢,現在國家也在推廣這方面的學習了。python簡單易學、免費開源、高層語言、可移植性超強、可擴展性、面向對象、可嵌入型、豐富的庫、規范的代碼等。Python除了極少的涉及...
回答:框架就是一個基本架構,別人已經替你搭建好了基本結構,你只需要按自己需求,添加內容就行,不需要反復的造輪子,可以明顯提高開發效率,節約時間,python的框架很多,目前來說有web框架,爬蟲框架,機器學習框架等,下面我簡單介紹一下這3種基本框架,主要內容如下:1.web框架,這個就很多了,目前來說,比較流行的有3種,分別是Django,Tornado和Flask,下面簡單介紹一下這3個框架:Djan...
回答:txt文件是我們比較常見的一種文件,讀取txt文件其實很簡單,下面我介紹3種讀取txt文件的方法,感興趣的可以了解一下,一種是最基本的方法,使用python自帶的open函數進行讀取,一種是結合numpy進行讀取,最后一種是利用pandas進行讀取,實驗環境win7+python3.6+pycharm5.0主要介紹如下:為了更好的說明問題,我這里新建一個test.txt文件,主要有4行4列數據,每...
Python 的列表(list)內部實現是一個數組,也就是一個線性表。在列表中查找元素可以使用 list.index() 方法,其時間復雜度為O(n)。對于大數據量,則可以用二分查找進行優化。二分查找要求對象必須有序,其基本原理如下: 1...
【百度云搜索,搜各種資料:http://www.bdyss.cn】 【搜網盤,搜各種資料:http://www.swpan.cn】 用命令創建自動爬蟲文件 創建爬蟲文件是根據scrapy的母版來創建爬蟲文件的 scrapy genspider -l??查看scrapy創建爬蟲文件可用的母版 Available te...
...gt; 小編寫這篇文章的主要目的,主要是講解一些關于python的事情,比如需要對圖片進行批量壓縮,壓縮的方法還是比較的多的,那么,為了提高效率,怎么進行批量壓縮呢?下面就給大家詳細解答下。...
...夠讀取環境變量,讀寫標準輸入輸出即可。下圖以Apache和Python為例,說明CGI的工作方式 Python的CGI擴展能夠在Python解釋器的幫助下,解釋用戶編寫的Python腳本,從而輸入輸出,雖然這個模型相比上面闡述的基本模型要復雜一點,...
...也是有單獨成篇的作用。特此聲明,請閱讀改進版—— Python進階:全面解讀高級特性之切片!https://mp.weixin.qq.com/s/IR... 眾所周知,我們可以通過索引值(或稱下標)來查找序列類型(如字符串、列表、元組...)中的單個元素,...
ChatGPT和Sora等AI大模型應用,將AI大模型和算力需求的熱度不斷帶上新的臺階。哪里可以獲得...
大模型的訓練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關性能圖表。同時根據訓練、推理能力由高到低做了...