国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

構(gòu)建二叉樹進行數(shù)值數(shù)組的去重及優(yōu)化

sarva / 572人閱讀

摘要:構(gòu)建二叉樹進行數(shù)值數(shù)組的去重及優(yōu)化常見兩層循環(huán)實現(xiàn)數(shù)組去重構(gòu)建二叉樹實現(xiàn)去重僅適用于數(shù)值類型的數(shù)組將先前遍歷過的元素,構(gòu)建成二叉樹,樹中每個結(jié)點都滿足左子結(jié)點的值當前結(jié)點的值右子結(jié)點的值這樣優(yōu)化了判斷元素是否之前出現(xiàn)過的過程若元素比當前結(jié)點

構(gòu)建二叉樹進行數(shù)值數(shù)組的去重及優(yōu)化 常見兩層循環(huán)實現(xiàn)數(shù)組去重
let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
let newArr = []
for (let i = 0; i < arr.length; i++) {
    let unique = true
    for (let j = 0; j < newArr.length; j++) {
        if (newArr[j] === arr[i]) {
            unique = false
            break
        }
    }
    if (unique) {
        newArr.push(arr[i])
    }
}
console.log(newArr)
構(gòu)建二叉樹實現(xiàn)去重(僅適用于數(shù)值類型的數(shù)組)

將先前遍歷過的元素,構(gòu)建成二叉樹,樹中每個結(jié)點都滿足:左子結(jié)點的值 < 當前結(jié)點的值 < 右子結(jié)點的值

這樣優(yōu)化了判斷元素是否之前出現(xiàn)過的過程

若元素比當前結(jié)點大,只需要判斷元素是否在結(jié)點的右子樹中出現(xiàn)過即可

若元素比當前結(jié)點小,只需要判斷元素是否在結(jié)點的左子樹中出現(xiàn)過即可

let arr = [0, 1, 2, 2, 5, 7, 11, 7, 6, 4,5, 2, 2]
class Node {
    constructor(value) {
        this.value = value
        this.left = null
        this.right = null
    }
}
class BinaryTree {
    constructor() {
        this.root = null
        this.arr = []
    }

    insert(value) {
        let node = new Node(value)
        if (!this.root) {
            this.root = node
            this.arr.push(value)
            return this.arr
        }
        let current = this.root
        while (true) {
            if (value > current.value) {
                if (current.right) {
                    current = current.right
                } else {
                    current.right = node
                    this.arr.push(value)
                    break
                }
            }
            if (value < current.value) {
                if (current.left) {
                    current = current.left
                } else {
                    current.left = node
                    this.arr.push(value)
                    break
                }
            }
            if (value === current.value) {
                break
            }
        }
        return this.arr
    }
}

let binaryTree = new BinaryTree()
for (let i = 0; i < arr.length; i++) {
    binaryTree.insert(arr[i])
}
console.log(binaryTree.arr)
優(yōu)化思路一,記錄最大最小值

記錄已經(jīng)插入元素的最大最小值,若比最大元素大,或最小元素小,則直接插入

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
class Node {
    constructor(value) {
        this.value = value
        this.left = null
        this.right = null
    }
}
class BinaryTree {
    constructor() {
        this.root = null
        this.arr = []
        this.max = null
        this.min = null
    }

    insert(value) {
        let node = new Node(value)
        if (!this.root) {
            this.root = node
            this.arr.push(value)
            this.max = value
            this.min = value
            return this.arr
        }
        if (value > this.max) {
            this.arr.push(value)
            this.max = value
            this.findMax().right = node
            return this.arr
        }
        if (value < this.min) {
            this.arr.push(value)
            this.min = value
            this.findMin().left = node
            return this.arr
        }
        let current = this.root
        while (true) {
            if (value > current.value) {
                if (current.right) {
                    current = current.right
                } else {
                    current.right = node
                    this.arr.push(value)
                    break
                }
            }
            if (value < current.value) {
                if (current.left) {
                    current = current.left
                } else {
                    current.left = node
                    this.arr.push(value)
                    break
                }
            }
            if (value === current.value) {
                break
            }
        }
        return this.arr
    }

    findMax() {
        let current = this.root
        while (current.right) {
            current = current.right
        }
        return current
    }

    findMin() {
        let current = this.root
        while (current.left) {
            current = current.left
        }
        return current
    }
}

let binaryTree = new BinaryTree()
for (let i = 0; i < arr.length; i++) {
    binaryTree.insert(arr[i])
}
console.log(binaryTree.arr)
優(yōu)化思路二,構(gòu)建紅黑樹

構(gòu)建紅黑樹,平衡樹的高度

有關(guān)紅黑樹的部分,請見紅黑樹的插入

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
console.log(Array.from(new Set(arr)))

class Node {
    constructor(value) {
        this.value = value
        this.left = null
        this.right = null
        this.parent = null
        this.color = "red"
    }
}

class RedBlackTree {
    constructor() {
        this.root = null
        this.arr = []
    }

    insert(value) {
        let node = new Node(value)
        if (!this.root) {
            node.color = "black"
            this.root = node
            this.arr.push(value)
            return this
        }
        let cur = this.root
        let inserted = false
        while (true) {
            if (value > cur.value) {
                if (cur.right) {
                    cur = cur.right
                } else {
                    cur.right = node
                    this.arr.push(value)
                    node.parent = cur
                    inserted = true
                    break
                }
            }

            if (value < cur.value) {
                if (cur.left) {
                    cur = cur.left
                } else {
                    cur.left = node
                    this.arr.push(value)
                    node.parent = cur
                    inserted = true
                    break
                }
            }

            if (value === cur.value) {
                break
            }
        }
        // 調(diào)整樹的結(jié)構(gòu)
        if(inserted){
            this.fixTree(node)
        }
        return this
    }

    fixTree(node) {
        if (!node.parent) {
            node.color = "black"
            this.root = node
            return
        }
        if (node.parent.color === "black") {
            return
        }
        let son = node
        let father = node.parent
        let grandFather = father.parent
        let directionFtoG = father === grandFather.left ? "left" : "right"
        let uncle = grandFather[directionFtoG === "left" ? "right" : "left"]
        let directionStoF = son === father.left ? "left" : "right"
        if (!uncle || uncle.color === "black") {
            if (directionFtoG === directionStoF) {
                if (grandFather.parent) {
                    grandFather.parent[grandFather.parent.left === grandFather ? "left" : "right"] = father
                    father.parent = grandFather.parent
                } else {
                    this.root = father
                    father.parent = null
                }
                father.color = "black"
                grandFather.color = "red"

                father[father.left === son ? "right" : "left"] && (father[father.left === son ? "right" : "left"].parent = grandFather)
                grandFather[grandFather.left === father ? "left" : "right"] = father[father.left === son ? "right" : "left"]

                father[father.left === son ? "right" : "left"] = grandFather
                grandFather.parent = father
                return
            } else {
                grandFather[directionFtoG] = son
                son.parent = grandFather

                son[directionFtoG] && (son[directionFtoG].parent = father)
                father[directionStoF] = son[directionFtoG]

                father.parent = son
                son[directionFtoG] = father
                this.fixTree(father)
            }
        } else {
            father.color = "black"
            uncle.color = "black"
            grandFather.color = "red"
            this.fixTree(grandFather)
        }
    }
}

let redBlackTree = new RedBlackTree()
for (let i = 0; i < arr.length; i++) {
    redBlackTree.insert(arr[i])
}
console.log(redBlackTree.arr)
其他去重方法 通過 Set 對象去重
[...new Set(arr)]
通過 sort() + reduce() 方法去重

排序后比較相鄰元素是否相同,若不同則添加至返回的數(shù)組中

值得注意的是,排序的時候,默認 compare(2, "2") 返回 0;而 reduce() 時,進行全等比較

let arr = [0, 1, 2, "2", 2, 5, 7, 11, 7, 5, 2, "2", 2]
let newArr = []
arr.sort((a, b) => {
    let res = a - b
    if (res !== 0) {
        return res
    } else {
        if (a === b) {
            return 0
        } else {
            if (typeof a === "number") {
                return -1
            } else {
                return 1
            }
        }
    }
}).reduce((pre, cur) => {
    if (pre !== cur) {
        newArr.push(cur)
        return cur
    }
    return pre
}, null)
通過 includes() + map() 方法去重
let arr = [0, 1, 2, "2", 2, 5, 7, 11, 7, 5, 2, "2", 2]
let newArr = []
arr.map(a => !newArr.includes(a) && newArr.push(a))
通過 includes() + reduce() 方法去重
let arr = [0, 1, 2, "2", 2, 5, 7, 11, 7, 5, 2, "2", 2]
let newArr = arr.reduce((pre, cur) => {
    !pre.includes(cur) && pre.push(cur)
    return pre
}, [])
通過對象的鍵值對 + JSON 對象方法去重
let arr = [0, 1, 2, "2", 2, 5, 7, 11, 7, 5, 2, "2", 2]
let obj = {}
arr.map(a => {
    if(!obj[JSON.stringify(a)]){
        obj[JSON.stringify(a)] = 1
    }
})

console.log(Object.keys(obj).map(a => JSON.parse(a)))

文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/107499.html

相關(guān)文章

  • 數(shù)據(jù)結(jié)構(gòu)與算法:常見排序算法

    摘要:這是一個簡單的遞歸函數(shù),你可以使用它來生成數(shù)列中指定序號的數(shù)值這個函數(shù)的問題在于它的執(zhí)行效率非常低有太多值在遞歸調(diào)用中被重新計算。 本章內(nèi)容銜接上一章 數(shù)據(jù)結(jié)構(gòu)與算法:二分查找 內(nèi)容提要 兩種基本數(shù)據(jù)結(jié)構(gòu): 數(shù)組 常見操作: 數(shù)組降維、數(shù)組去重 鏈表 遞歸:遞歸是很多算法都使用的一種編程方法   - 如何將問題分成基線條件和遞歸條件   - 分而治之策略解決棘手問題 ...

    wuyumin 評論0 收藏0
  • 數(shù)據(jù)結(jié)構(gòu)與算法:常見排序算法

    摘要:這是一個簡單的遞歸函數(shù),你可以使用它來生成數(shù)列中指定序號的數(shù)值這個函數(shù)的問題在于它的執(zhí)行效率非常低有太多值在遞歸調(diào)用中被重新計算。 本章內(nèi)容銜接上一章 數(shù)據(jù)結(jié)構(gòu)與算法:二分查找 內(nèi)容提要 兩種基本數(shù)據(jù)結(jié)構(gòu): 數(shù)組 常見操作: 數(shù)組降維、數(shù)組去重 鏈表 遞歸:遞歸是很多算法都使用的一種編程方法   - 如何將問題分成基線條件和遞歸條件   - 分而治之策略解決棘手問題 ...

    Carson 評論0 收藏0
  • js數(shù)據(jù)結(jié)構(gòu)-叉樹二叉堆)

    摘要:二叉樹二叉樹是一種樹形結(jié)構(gòu),它的特點是每個節(jié)點最多只有兩個分支節(jié)點,一棵二叉樹通常由根節(jié)點,分支節(jié)點,葉子節(jié)點組成。 二叉樹 二叉樹(Binary Tree)是一種樹形結(jié)構(gòu),它的特點是每個節(jié)點最多只有兩個分支節(jié)點,一棵二叉樹通常由根節(jié)點,分支節(jié)點,葉子節(jié)點組成。而每個分支節(jié)點也常常被稱作為一棵子樹。 showImg(https://segmentfault.com/img/bVbmEd...

    ningwang 評論0 收藏0
  • 初級前端開發(fā)面試總結(jié)

    摘要:前端面試總結(jié)先說背景,本人年月畢業(yè),去年十月校招到今年月一直在做前端開發(fā)工作,年前打算換工作,就重新梳理下面試考點總結(jié)包含基礎(chǔ),基礎(chǔ),常見算法和數(shù)據(jù)結(jié)構(gòu),框架,計算機網(wǎng)絡(luò)相關(guān)知識,可能有的點很細,有的點很大,參考個人情況進行總結(jié),方便對知識 前端面試總結(jié) 先說背景,本人2018年7月畢業(yè),去年十月校招到今年10月一直在做前端開發(fā)工作,年前打算換工作,就重新梳理下面試考點總結(jié)包含: ...

    jifei 評論0 收藏0
  • 初級前端開發(fā)面試總結(jié)

    摘要:前端面試總結(jié)先說背景,本人年月畢業(yè),去年十月校招到今年月一直在做前端開發(fā)工作,年前打算換工作,就重新梳理下面試考點總結(jié)包含基礎(chǔ),基礎(chǔ),常見算法和數(shù)據(jù)結(jié)構(gòu),框架,計算機網(wǎng)絡(luò)相關(guān)知識,可能有的點很細,有的點很大,參考個人情況進行總結(jié),方便對知識 前端面試總結(jié) 先說背景,本人2018年7月畢業(yè),去年十月校招到今年10月一直在做前端開發(fā)工作,年前打算換工作,就重新梳理下面試考點總結(jié)包含: ...

    tigerZH 評論0 收藏0

發(fā)表評論

0條評論

sarva

|高級講師

TA的文章

閱讀更多
最新活動
閱讀需要支付1元查看
<