摘要:文章目錄一線性模型二繪圖工具三作業一線性模型不要小看簡單線性模型哈哈,雖然這講我們還沒正式用到,但是用到的前向傳播損失函數兩種繪圖等方法在后面是很常用的。
不要小看簡單線性模型哈哈,雖然這講我們還沒正式用到pytorch,但是用到的前向傳播、損失函數、兩種繪loss圖等方法在后面是很常用的。
對下面的代碼說明:
zip
函數可以將x_data
和y_data
組合元組列表,在for循環中每次遍歷就是對于列表中的每個元組。forward()
中,有一個變量w。這個變量最終的值是從for循環中傳入的。# -*- coding: utf-8 -*-"""Created on Tue Oct 12 14:30:13 2021@author: 86493"""import numpy as npimport matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]def forward(x): return x * wdef loss(x, y): y_pred = forward(x) return (y_pred - y) * (y_pred - y)# 保存權重w_list = []# 保存權重的損失函數值mse_list = []# 窮舉w值對應的損失函數MSEfor w in np.arange(0.0, 4.1, 0.1): print("w = ", w) loss_sum = 0 for x_val, y_val in zip(x_data, y_data): # 為了打印y預測值,其實loss里也計算了 y_pred_val = forward(x_val) loss_val = loss(x_val, y_val) loss_sum += loss_val print("/t", x_val, y_val, y_pred_val, loss_val) print("MSE = ", loss_sum / 3) print("="*60) w_list.append(w) mse_list.append(loss_sum / 3) # 繪loss變化圖,橫坐標是w,縱坐標是lossplt.plot(w_list, mse_list)plt.ylabel("Loss")plt.xlabel("w")plt.show()
剛才對應的打印結果為:
w = 0.0 1.0 2.0 0.0 4.0 2.0 4.0 0.0 16.0 3.0 6.0 0.0 36.0MSE = 18.666666666666668============================================================w = 0.1 1.0 2.0 0.1 3.61 2.0 4.0 0.2 14.44 3.0 6.0 0.30000000000000004 32.49MSE = 16.846666666666668============================================================w = 0.2 1.0 2.0 0.2 3.24 2.0 4.0 0.4 12.96 3.0 6.0 0.6000000000000001 29.160000000000004MSE = 15.120000000000003============================================================w = 0.30000000000000004 1.0 2.0 0.30000000000000004 2.8899999999999997 2.0 4.0 0.6000000000000001 11.559999999999999 3.0 6.0 0.9000000000000001 26.009999999999998MSE = 13.486666666666665============================================================w = 0.4 1.0 2.0 0.4 2.5600000000000005 2.0 4.0 0.8 10.240000000000002 3.0 6.0 1.2000000000000002 23.04MSE = 11.946666666666667============================================================w = 0.5 1.0 2.0 0.5 2.25 2.0 4.0 1.0 9.0 3.0 6.0 1.5 20.25MSE = 10.5============================================================w = 0.6000000000000001 1.0 2.0 0.6000000000000001 1.9599999999999997 2.0 4.0 1.2000000000000002 7.839999999999999 3.0 6.0 1.8000000000000003 17.639999999999993MSE = 9.146666666666663============================================================w = 0.7000000000000001 1.0 2.0 0.7000000000000001 1.6899999999999995 2.0 4.0 1.4000000000000001 6.759999999999998 3.0 6.0 2.1 15.209999999999999MSE = 7.886666666666666============================================================w = 0.8 1.0 2.0 0.8 1.44 2.0 4.0 1.6 5.76 3.0 6.0 2.4000000000000004 12.959999999999997MSE = 6.719999999999999============================================================w = 0.9 1.0 2.0 0.9 1.2100000000000002 2.0 4.0 1.8 4.840000000000001 3.0 6.0 2.7 10.889999999999999MSE = 5.646666666666666============================================================w = 1.0 1.0 2.0 1.0 1.0 2.0 4.0 2.0 4.0 3.0 6.0 3.0 9.0MSE = 4.666666666666667============================================================w = 1.1 1.0 2.0 1.1 0.8099999999999998 2.0 4.0 2.2 3.2399999999999993 3.0 6.0 3.3000000000000003 7.289999999999998MSE = 3.779999999999999============================================================w = 1.2000000000000002 1.0 2.0 1.2000000000000002 0.6399999999999997 2.0 4.0 2.4000000000000004 2.5599999999999987 3.0 6.0 3.6000000000000005 5.759999999999997MSE = 2.986666666666665============================================================w = 1.3 1.0 2.0 1.3 0.48999999999999994 2.0 4.0 2.6 1.9599999999999997 3.0 6.0 3.9000000000000004 4.409999999999998MSE = 2.2866666666666657============================================================w = 1.4000000000000001 1.0 2.0 1.4000000000000001 0.3599999999999998 2.0 4.0 2.8000000000000003 1.4399999999999993 3.0 6.0 4.2 3.2399999999999993MSE = 1.6799999999999995============================================================w = 1.5 1.0 2.0 1.5 0.25 2.0 4.0 3.0 1.0 3.0 6.0 4.5 2.25MSE = 1.1666666666666667============================================================w = 1.6 1.0 2.0 1.6 0.15999999999999992 2.0 4.0 3.2 0.6399999999999997 3.0 6.0 4.800000000000001 1.4399999999999984MSE = 0.746666666666666============================================================w = 1.7000000000000002 1.0 2.0 1.7000000000000002 0.0899999999999999 2.0 4.0 3.4000000000000004 0.3599999999999996 3.0 6.0 5.1000000000000005 0.809999999999999MSE = 0.4199999999999995============================================================w = 1.8 1.0 2.0 1.8 0.03999999999999998 2.0 4.0 3.6 0.15999999999999992 3.0 6.0 5.4 0.3599999999999996MSE = 0.1866666666666665============================================================w = 1.9000000000000001 1.0 2.0 1.9000000000000001 0.009999999999999974 2.0 4.0 3.8000000000000003 0.0399999999999999 3.0 6.0 5.7 0.0899999999999999MSE = 0.046666666666666586============================================================w = 2.0 1.0 2.0 2.0 0.0 2.0 4.0 4.0 0.0 3.0 6.0 6.0 0.0MSE = 0.0============================================================w = 2.1 1.0 2.0 2.1 0.010000000000000018 2.0 4.0 4.2 0.04000000000000007 3.0 6.0 6.300000000000001 0.09000000000000043MSE = 0.046666666666666835============================================================w = 2.2 1.0 2.0 2.2 0.04000000000000007 2.0 4.0 4.4 0.16000000000000028 3.0 6.0 6.6000000000000005 0.36000000000000065MSE = 0.18666666666666698============================================================w = 2.3000000000000003 1.0 2.0 2.3000000000000003 0.09000000000000016 2.0 4.0 4.6000000000000005 0.36000000000000065 3.0 6.0 6.9 0.8100000000000006MSE = 0.42000000000000054============================================================w = 2.4000000000000004 1.0 2.0 2.4000000000000004 0.16000000000000028 2.0 4.0 4.800000000000001 0.6400000000000011 3.0 6.0 7.200000000000001 1.4400000000000026MSE = 0.7466666666666679============================================================w = 2.5 1.0 2.0 2.5 0.25 2.0 4.0 5.0 1.0 3.0 6.0 7.5 2.25MSE = 1.1666666666666667============================================================w = 2.6 1.0 2.0 2.6 0.3600000000000001 2.0 4.0 5.2 1.4400000000000004 3.0 6.0 7.800000000000001 3.2400000000000024MSE = 1.6800000000000008============================================================w = 2.7 1.0 2.0 2.7 0.49000000000000027 2.0 4.0 5.4 1.960000000000001 3.0 6.0 8.100000000000001 4.410000000000006MSE = 2.2866666666666693==========================================
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/122570.html
摘要:在這個階段,學習工具什么的,重點在于接口測試的學習,所有的工具的學習,都是在為了接口測試的學習做鋪墊。接口測試工具的使用。 很多朋友想要入行軟件測試,但是都不知道該怎么學。 抽個時間簡單的給大家說下,對于0基礎的朋友,應該怎么去學習軟件測試。 學習軟件測試有2條路可以選。 最省事的當然是找個...
馬上就要開始啦這次共組織15個組隊學習 涵蓋了AI領域從理論知識到動手實踐的內容 按照下面給出的最完備學習路線分類 難度系數分為低、中、高三檔 可以按照需要參加 - 學習路線 - showImg(https://segmentfault.com/img/remote/1460000019082128); showImg(https://segmentfault.com/img/remote/...
摘要:請回復這個帖子并注明組織個人信息來申請加入。權限分配靈活,能者居之。數量超過個,在所有組織中排名前。網站日超過,排名的峰值為。導航歸檔社區自媒體平臺微博知乎專欄公眾號博客園簡書合作侵權,請聯系請抄送一份到贊助我們 Special Sponsors showImg(https://segmentfault.com/img/remote/1460000018907426?w=1760&h=...
閱讀 3732·2021-10-14 09:43
閱讀 3315·2021-08-25 09:38
閱讀 614·2019-08-30 15:55
閱讀 1353·2019-08-30 13:05
閱讀 2245·2019-08-29 16:05
閱讀 511·2019-08-29 12:58
閱讀 2799·2019-08-29 12:34
閱讀 3247·2019-08-26 12:15