国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

PostgreSQL并行查詢體驗(yàn)

IT那活兒 / 1510人閱讀
PostgreSQL并行查詢體驗(yàn)

點(diǎn)擊上方藍(lán)字關(guān)注我們


 

背景介紹


數(shù)據(jù)庫查詢性能是評價數(shù)據(jù)庫的核心指標(biāo),隨著現(xiàn)代服務(wù)器的資源配置越來越強(qiáng)大,為充分發(fā)揮硬件性能提升數(shù)據(jù)庫查詢性能,可以通過把操作分解成多個并行執(zhí)行來實(shí)現(xiàn)。

 

什么是并行查詢?


并行查詢可以利用多個CPU同時參與查詢處理工作,充分發(fā)揮硬件性能,以提高運(yùn)行速度。

 

如何使用并行查詢?

 

在測試的版本(Version 12.1)中,數(shù)據(jù)庫默認(rèn)啟用了2路并行。

 
此功能主要涉及以下幾個參數(shù)和默認(rèn)值:

max_worker_processes:數(shù)據(jù)庫支持的最大后臺進(jìn)程數(shù),默認(rèn)值為8

max_parallel_workers:數(shù)據(jù)庫支持的最大并行查詢數(shù),實(shí)際分配的數(shù)量受上面的max_worker_processes參數(shù)限制,默認(rèn)值為8

max_parallel_workers_per_gather:目前可以啟動的并行數(shù),實(shí)際分配的數(shù)量受上面的max_parallel_workers參數(shù)限制,max_parallel_workers_per_gather默認(rèn)值為2

 

worker進(jìn)程數(shù)量越多,查詢性能越高嗎?


不是,目前在筆者的測試場景中發(fā)現(xiàn),worker進(jìn)程可以設(shè)置的很高,但是數(shù)據(jù)庫會根據(jù)實(shí)際需要分配worker,比如設(shè)置了max_parallel_workers_per_gather=16,但實(shí)際上執(zhí)行計(jì)劃中可能分配不到這么多的worker。性能不會隨著并行度的提升而線性增加。建議設(shè)置的數(shù)值不超過服務(wù)器CPU數(shù)量。

 

如果服務(wù)器資源比較緊張,建議在個別重要查詢的會話級別(如夜間批量同步任務(wù))中多帶帶提高并發(fā)數(shù)。

 

 

怎么看到并行的任務(wù)?


 

Linux中可以通過pstop命令查看到相應(yīng)的進(jìn)程和相關(guān)連的worker進(jìn)程:

 

 

系統(tǒng)中有以下進(jìn)程,第1個是leader進(jìn)程,2worker進(jìn)程:

postgres   3279   2158  2 01:59 ?        00:04:51 postgres: postgres music [local] SELECT

postgres  12501   2158 93 04:47 ?        00:00:02 postgres: parallel worker for PID 3279

postgres  12502   2158 93 04:47 ?        00:00:02 postgres: parallel worker for PID 3279

 

top中也可以抓的到進(jìn)程的性能數(shù)據(jù):

top - 04:51:16 up  6:24,  2 users,  load average: 0.10, 0.06, 0.10

Tasks: 147 total,   4 running, 143 sleeping,   0 stopped,   0 zombie

%Cpu(s): 46.0 us,  6.5 sy,  0.0 ni, 47.4 id,  0.0 wa,  0.0 hi,  0.1 si,  0.0 st

KiB Mem : 14.0/3861364  [||||||||||||||                                                                                   ]

KiB Swap: 20.1/2097148  [||||||||||||||||||||                                                                                ]

 

   PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND

  3279 postgres  20   0  404368 144000 140976 R  71.4  3.7   5:00.69 postgres: postgres music [local] SELECT

 12693 postgres  20   0  400824   6056   4608 R  71.4  0.2   0:02.15 postgres: parallel worker for PID 3279

 12694 postgres  20   0  400824   6056   4608 R  70.8  0.2   0:02.13 postgres: parallel worker for PID 3279

 

 

下面用圖來描述一下相關(guān)進(jìn)程的關(guān)系,在多路并發(fā)的情況下,會根據(jù)并發(fā)數(shù)創(chuàng)建新的worker進(jìn)程來分擔(dān)并發(fā)任務(wù):

 

 

 

能否看到更詳細(xì)的執(zhí)行情況?


能。在執(zhí)行計(jì)劃中可以看得到。

 


我們看一個實(shí)際的執(zhí)行計(jì)劃:

 

首先將并行度提升到6路:

music=# set max_parallel_workers_per_gather = 6;

SET

 

看一下實(shí)際的執(zhí)行計(jì)劃

music=# EXPLAIN (ANALYZE,VERBOSE) SELECT * FROM rock WHERE name = Bon_Jovi;

                                                              QUERY PLAN

---------------------------------------------------------------------------------------------------------------------------------------

 Gather  (cost=1000.00..471830.76 rows=1 width=25) (actual time=0.270..2811.900 rows=1 loops=1)

   Output: id, name, create_time

   Workers Planned: 6

   Workers Launched: 6

   ->  Parallel Seq Scan on public.rock  (cost=0.00..470830.66 rows=1 width=25) (actual time=2374.703..2775.358 rows=0 loops=7)

         Output: id, name, create_time

         Filter: ((rock.name)::text = Bon_Jovi::text)

         Rows Removed by Filter: 7142857

         Worker 0: actual time=2756.906..2756.906 rows=0 loops=1

         Worker 1: actual time=2765.581..2765.581 rows=0 loops=1

         Worker 2: actual time=2769.584..2769.584 rows=0 loops=1

         Worker 3: actual time=2778.855..2778.855 rows=0 loops=1

         Worker 4: actual time=2752.952..2752.952 rows=0 loops=1

         Worker 5: actual time=2799.014..2799.014 rows=0 loops=1

 Planning Time: 0.048 ms

 Execution Time: 2811.918 ms

 

從下往上看,最下層的節(jié)點(diǎn),顯示了6Worker的執(zhí)行信息信息,包括啟動時間、總時間等。他們都屬于并行順序查詢節(jié)點(diǎn)(Parallel Seq Scan開頭那一行)。再往上提示,一共規(guī)劃了6個節(jié)點(diǎn),實(shí)際分配了6個節(jié)點(diǎn)。第一行是Gather節(jié)點(diǎn)的成本和時間等信息,Gather節(jié)點(diǎn)匯總了各個節(jié)點(diǎn)讀取的數(shù)據(jù)。

 

下面在開頭的圖里進(jìn)一步詳細(xì)描述一下該語句的執(zhí)行詳情:

 

 

 

設(shè)置了并行就會啟動并行查詢?

 

有時候會出現(xiàn)設(shè)置了并發(fā)但是不會真正啟動并發(fā)進(jìn)程的情況:

 

music=# EXPLAIN SELECT * FROM rock WHERE id = 1;

                                      QUERY PLAN

---------------------------------------------------------------------------------------

 Index Scan using idx_rock_id on rock  (cost=0.56..8.58 rows=1 width=25)

   Index Cond: (id = 1)

(2 rows)

 

music=# EXPLAIN (ANALYZE,VERBOSE) SELECT * FROM rock WHERE id = 1;

                                                               QUERY PLAN

----------------------------------------------------------------------------------------------------------------------------------------

 Index Scan using idx_rock_id on public.rock  (cost=0.56..8.58 rows=1 width=25) (actual time=0.087..0.088 rows=1 loops=1)

   Output: id, name, create_time

   Index Cond: (rock.id = 1)

 Planning Time: 0.079 ms

 Execution Time: 0.111 ms

(5 rows)

 

采用了索引掃描,由于cost的值比較低,盡管有設(shè)置并發(fā),但是cost未觸發(fā)到并發(fā)所需的條件,所以說不會啟用并發(fā)。也有可能因?yàn)樵u估不需要那么多的并發(fā)而啟動一部分?jǐn)?shù)量的worker(后文有演示)

 

觸發(fā)并發(fā)的條件有以下兩個,當(dāng)以查詢的代價觸發(fā)到以下兩個參數(shù)的值時,才會觸發(fā)并行:

parallel_setup_cost = 1000

parallel_tuple_cost = 0.1

 

在本次查詢中,索引掃描的cost值總體才到8.58,因此未觸發(fā)并行機(jī)制。

 

同樣,在bitmap等查詢場景中,成本達(dá)不到cost值觸發(fā)條件的話,均不會啟動并發(fā)查詢,如:

在筆者使用體驗(yàn)過程中,發(fā)現(xiàn)也有并發(fā)度按需分配的情況:

music=# set max_parallel_workers_per_gather = 6;

SET

music=# EXPLAIN ANALYSE SELECT * FROM rock WHERE id = 1 OR id = 2;

                                                           QUERY PLAN

---------------------------------------------------------------------------------------------------------------------------------

 Bitmap Heap Scan on rock  (cost=9.15..17.16 rows=2 width=25) (actual time=0.019..0.020 rows=2 loops=1)

   Recheck Cond: ((id = 1) OR (id = 2))

   Heap Blocks: exact=1

   ->  BitmapOr  (cost=9.15..9.15 rows=2 width=0) (actual time=0.015..0.015 rows=0 loops=1)

         ->  Bitmap Index Scan on idx_rock_id  (cost=0.00..4.57 rows=1 width=0) (actual time=0.013..0.013 rows=1 loops=1)

               Index Cond: (id = 1)

         ->  Bitmap Index Scan on idx_rock_id  (cost=0.00..4.57 rows=1 width=0) (actual time=0.002..0.002 rows=1 loops=1)

               Index Cond: (id = 2)

 Planning Time: 0.059 ms

 Execution Time: 0.040 ms

(10 rows) 

 

 

 

索引并行掃描的場景觸發(fā)并行的情況可以看一下以下案例:

music=# EXPLAIN (ANALYZE,VERBOSE) SELECT count(*) FROM rock WHERE id < 10000000;

                                                                                        QUERY PLAN

 

-----------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------

 Finalize Aggregate  (cost=279145.34..279145.35 rows=1 width=8) (actual time=3482.259..3482.259 rows=1 loops=1)

   Output: count(*)

   ->  Gather  (cost=279144.71..279145.32 rows=6 width=8) (actual time=3453.374..3487.724 rows=7 loops=1)

         Output: (PARTIAL count(*))

         Workers Planned: 6

         Workers Launched: 6

         ->  Partial Aggregate  (cost=278144.71..278144.72 rows=1 width=8) (actual time=3436.943..3436.943 rows=1 loops=7)

               Output: PARTIAL count(*)

               Worker 0: actual time=3427.536..3427.536 rows=1 loops=1

               Worker 1: actual time=3440.951..3440.951 rows=1 loops=1

               Worker 2: actual time=3433.833..3433.833 rows=1 loops=1

               Worker 3: actual time=3438.579..3438.579 rows=1 loops=1

               Worker 4: actual time=3438.378..3438.379 rows=1 loops=1

               Worker 5: actual time=3426.513..3426.513 rows=1 loops=1

               ->  Parallel Index Only Scan using idx_rock_id on public.rock  (cost=0.56..273988.62 rows=1662437 width=0) (

actual time=2.701..3281.001 rows=1428571 loops=7)

                     Output: id

                     Index Cond: (rock.id < 10000000)

                     Heap Fetches: 9999999

                     Worker 0: actual time=0.605..3271.022 rows=1466562 loops=1

                     Worker 1: actual time=0.170..3286.350 rows=1449726 loops=1

                     Worker 2: actual time=0.424..3291.647 rows=1301496 loops=1

                     Worker 3: actual time=3.191..3258.715 rows=1658712 loops=1

                     Worker 4: actual time=12.856..3273.552 rows=1509750 loops=1

                     Worker 5: actual time=1.608..3284.193 rows=1294323 loops=1

 Planning Time: 2.203 ms

 Execution Time: 3488.023 ms

(26 rows)

 

 

從下往上看分別進(jìn)行了:并行索引掃描---并行聚合---最終聚合

首先啟動了6worker進(jìn)程進(jìn)行了索引條件掃描,在數(shù)據(jù)庫估算開銷時認(rèn)為每一個worker的掃描成本都高于1000,因此觸發(fā)了并發(fā)。當(dāng)每一個worker將數(shù)據(jù)掃描后,進(jìn)行分別處理后,最終給gather匯總整合輸出。

 

執(zhí)行過程可參考下圖:



 

設(shè)置了并行參數(shù)后,一定會啟動并行嗎?


然后對幾類常見的查詢場景進(jìn)行了測試,除了在上面的順序掃描、索引掃描之外,在聚合、bitmap、嵌套循環(huán)、merge joinhash join和索引創(chuàng)建場景,在數(shù)據(jù)量足夠大的場景下,均可觸發(fā)啟動并行。

 

一定會啟動設(shè)定的并行度嗎?


不一定,其中在嵌套循環(huán)(Nest loop)場景中,發(fā)現(xiàn)盡管我們設(shè)置了6路并發(fā),但是實(shí)際根據(jù)需要僅啟動了5路,在實(shí)戰(zhàn)中遇到此類情況,不要疑惑,也屬正常,勤儉節(jié)約是美德:

 

music=# show  max_parallel_workers_per_gather;

 max_parallel_workers_per_gather

---------------------------------

 6

(1 row)

 

 

music=# EXPLAIN (ANALYZE,VERBOSE) SELECT pop.name FROM rock,pop WHERE rock.id = pop.id AND pop.id < 10000;

                                                                         QUERY PLAN

 

-----------------------------------------------------------------------------------------------------------------------------------------

-------------------

 Gather  (cost=1000.57..174222.54 rows=18002 width=13) (actual time=5.881..3276.311 rows=19998 loops=1)

   Output: pop.name

   Workers Planned: 5

   Workers Launched: 5

   ->  Nested Loop  (cost=0.56..171422.34 rows=3600 width=13) (actual time=3.189..3258.998 rows=3333 loops=6)

         Output: pop.name

         Worker 0: actual time=2.591..3259.895 rows=1850 loops=1

         Worker 1: actual time=0.180..3251.631 rows=4081 loops=1

         Worker 2: actual time=1.344..3261.433 rows=555 loops=1

         Worker 3: actual time=8.603..3262.411 rows=3330 loops=1

         Worker 4: actual time=0.821..3259.297 rows=4623 loops=1

         ->  Parallel Seq Scan on public.pop  (cost=0.00..141721.20 rows=3600 width=17) (actual time=1.020..3223.285 rows=3333 loops

=6)

               Output: pop.id, pop.name

               Filter: (pop.id < 10000)

               Rows Removed by Filter: 2663334

               Worker 0: actual time=0.054..3237.921 rows=1850 loops=1

               Worker 1: actual time=0.049..3215.862 rows=4081 loops=1

               Worker 2: actual time=0.102..3236.592 rows=555 loops=1

               Worker 3: actual time=0.296..3235.327 rows=3330 loops=1

               Worker 4: actual time=0.055..3188.732 rows=4623 loops=1

         ->  Index Only Scan using idx_rock_id on public.rock  (cost=0.56..8.24 rows=1 width=4) (actual time=0.008..0.010 r

ows=1 loops=19998)

               Output: rock.id

               Index Cond: (rock.id = pop.id)

               Heap Fetches: 19998

               Worker 0: actual time=0.011..0.011 rows=1 loops=1850

               Worker 1: actual time=0.008..0.008 rows=1 loops=4081

               Worker 2: actual time=0.044..0.044 rows=1 loops=555

               Worker 3: actual time=0.007..0.007 rows=1 loops=3330

               Worker 4: actual time=0.006..0.015 rows=1 loops=4623

 Planning Time: 0.579 ms

 Execution Time: 3277.727 ms

(31 rows)


 


以上語句在實(shí)際工作中一般需要添加以下索引,提高一下查詢速度,當(dāng)添加玩索引之后,發(fā)現(xiàn)查詢的代價下降的很少,以至于不需要觸發(fā)那么多并發(fā)進(jìn)程了:

music=# CREATE INDEX idx_pop_id ON pop(id);

WARNING:  concurrent insert in progress within table "b"

CREATE INDEX

 

music=# set max_parallel_workers_per_gather = 6;

SET

music=# EXPLAIN (ANALYZE,VERBOSE) SELECT pop.name FROM rock,pop WHERE rock.id = pop.id AND pop.id < 10000;

                                                                         QUERY PLAN

 

-----------------------------------------------------------------------------------------------------------------------------------------

-------------------

 Gather  (cost=1388.64..108804.88 rows=20599 width=13) (actual time=1.316..35.770 rows=19998 loops=1)

   Output: pop.name

   Workers Planned: 3

   Workers Launched: 3

   ->  Nested Loop  (cost=388.64..105744.98 rows=6645 width=13) (actual time=0.341..27.475 rows=5000 loops=4)

         Output: pop.name

         Worker 0: actual time=0.095..26.337 rows=5365 loops=1

         Worker 1: actual time=0.091..26.641 rows=5753 loops=1

         Worker 2: actual time=0.101..28.578 rows=3145 loops=1

         ->  Parallel Bitmap Heap Scan on public.pop  (cost=388.08..51229.82 rows=6645 width=17) (actual time=0.298..1.265 rows=5000 loops=4)

               Output: pop.id, pop.name

               Recheck Cond: (pop.id < 10000)

               Heap Blocks: exact=31

               Worker 0: actual time=0.044..1.111 rows=5365 loops=1

               Worker 1: actual time=0.044..1.205 rows=5753 loops=1

               Worker 2: actual time=0.049..0.681 rows=3145 loops=1

               ->  Bitmap Index Scan on idx_pop_id  (cost=0.00..382.93 rows=20599 width=0) (actual time=1.012..1.012 rows=19998 loops=1)

                     Index Cond: (pop.id < 10000)

         ->  Index Only Scan using idx_rock_id on public.rock  (cost=0.56..8.19 rows=1 width=4) (actual time=0.004..0.004 rows=1 loops=19998)

               Output: rock.id

               Index Cond: (rock.id = pop.id)

               Heap Fetches: 19998

               Worker 0: actual time=0.004..0.004 rows=1 loops=5365

               Worker 1: actual time=0.003..0.004 rows=1 loops=5753

               Worker 2: actual time=0.004..0.004 rows=1 loops=3145

 Planning Time: 0.264 ms

 Execution Time: 37.025 ms

(27 rows)

  

 

 

總結(jié)


1、并行查詢在優(yōu)化器評估執(zhí)行計(jì)劃的代價后,在設(shè)定的max_parallel_workers_per_gather參數(shù)值范圍內(nèi)按需啟動(啟動一部分或不啟動)work并發(fā)進(jìn)程進(jìn)行查詢。
2、并行查詢對數(shù)據(jù)量大的查詢效果明顯。
3、并行創(chuàng)建索引的時候,除了設(shè)置max_parallel_workers_per_gather參數(shù)之外,還需要配置max_parallel_maintenance_workers參數(shù)來配合處理工作。
4、并行度不是越大越好,盡管可以強(qiáng)制設(shè)置并行,但是建議不要在生產(chǎn)環(huán)境中冒險(xiǎn)。
5、可以在會話級別啟動并行,主要用于數(shù)據(jù)量較大、并且及時性較強(qiáng)的任務(wù)中較好,如果第一次使用,需要密切關(guān)注服務(wù)器整體性能負(fù)載情況。


END



文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/129987.html

相關(guān)文章

  • PostgreSQL9.6:Parallel sequential scans 初體驗(yàn)

    摘要:一關(guān)于參數(shù)這個參數(shù)配置決定了每個并行操作允許的最大后臺進(jìn)程數(shù),這個值的設(shè)置受后臺進(jìn)程數(shù)參數(shù)限制。查看并行順序掃描進(jìn)程備注圖中可看到出現(xiàn)了四個進(jìn)程。三測試測試之前先把的數(shù)據(jù)庫關(guān)了,在確保相等情況下進(jìn)行測試。 Oracle 支持強(qiáng)大的并行功能,創(chuàng)建索引,表分析,數(shù)據(jù)加載時可以開啟并行,這項(xiàng)功能讓很多數(shù)據(jù)庫產(chǎn)品垂涎, 作為開源數(shù)據(jù)庫 PostgreSQL 在并行方面也在努力嘗試,很早之前 P...

    wangdai 評論0 收藏0
  • 新書推薦 |《PostgreSQL實(shí)戰(zhàn)》出版(提供樣章下載)

    摘要:作者譚峰張文升出版日期年月頁數(shù)頁定價元本書特色中國開源軟件推進(jìn)聯(lián)盟分會特聘專家撰寫,國內(nèi)多位開源數(shù)據(jù)庫專家鼎力推薦。張文升中國開源軟件推進(jìn)聯(lián)盟分會核心成員之一。 很高興《PostgreSQL實(shí)戰(zhàn)》一書終于出版,本書大體上系統(tǒng)總結(jié)了筆者 PostgreSQL DBA 職業(yè)生涯的經(jīng)驗(yàn)總結(jié),本書的另一位作者張文升擁有豐富的PostgreSQL運(yùn)維經(jīng)驗(yàn),目前就職于探探科技任首席PostgreS...

    Martin91 評論0 收藏0
  • 構(gòu)建可擴(kuò)展的PostgreSQL解決方案

    摘要:這可以通過負(fù)載平衡來實(shí)現(xiàn)數(shù)據(jù)分片當(dāng)問題不是并發(fā)查詢的數(shù)量,而是數(shù)據(jù)庫的大小和單個查詢的速度時,可以實(shí)現(xiàn)不同的方法。 showImg(https://segmentfault.com/img/remote/1460000018875091); 來源 | 愿碼(ChainDesk.CN)內(nèi)容編輯 愿碼Slogan | 連接每個程序員的故事 網(wǎng)站 | http://chaindesk.cn...

    jonh_felix 評論0 收藏0
  • 構(gòu)建可擴(kuò)展的PostgreSQL解決方案

    摘要:這可以通過負(fù)載平衡來實(shí)現(xiàn)數(shù)據(jù)分片當(dāng)問題不是并發(fā)查詢的數(shù)量,而是數(shù)據(jù)庫的大小和單個查詢的速度時,可以實(shí)現(xiàn)不同的方法。 showImg(https://segmentfault.com/img/remote/1460000018875091); 來源 | 愿碼(ChainDesk.CN)內(nèi)容編輯 愿碼Slogan | 連接每個程序員的故事 網(wǎng)站 | http://chaindesk.cn...

    FrozenMap 評論0 收藏0
  • 你應(yīng)該使用哪個云數(shù)據(jù)庫?

    摘要:云計(jì)算云計(jì)算的基本原則是采用一次性和可更換的多臺機(jī)器,這對采用云計(jì)算技術(shù)以及在云中實(shí)施的數(shù)據(jù)庫系統(tǒng)的功能有直接影響。云數(shù)據(jù)庫屬于相同的類別,而新系統(tǒng)明顯傾向于并行優(yōu)先。與非云系統(tǒng)相比,云計(jì)算系統(tǒng)向數(shù)據(jù)庫應(yīng)用程序公開資源利用控制要常見得多。 云計(jì)算的基本原則是采用一次性和可更換的多臺機(jī)器,這對采用云計(jì)算技術(shù)以及在云中實(shí)施的數(shù)據(jù)庫系統(tǒng)的功能有直接影響。傳統(tǒng)數(shù)據(jù)庫大致可以分為并行優(yōu)先(例如Mo...

    wuaiqiu 評論0 收藏0

發(fā)表評論

0條評論

IT那活兒

|高級講師

TA的文章

閱讀更多
最新活動
閱讀需要支付1元查看
<