import tensorflow as tf # 定義兩個(gè)向量 a = tf.constant([1.0, 2.0, 3.0]) b = tf.constant([4.0, 5.0, 6.0]) # 計(jì)算向量之和 c = tf.add(a, b) # 創(chuàng)建會(huì)話(huà)并運(yùn)行計(jì)算圖 with tf.Session() as sess: result = sess.run(c) print(result)以上代碼首先導(dǎo)入TensorFlow庫(kù),然后定義了兩個(gè)向量a和b。接下來(lái),使用TensorFlow的add()函數(shù)計(jì)算了這兩個(gè)向量的和,并將結(jié)果存儲(chǔ)在變量c中。最后,創(chuàng)建了一個(gè)會(huì)話(huà)并使用run()函數(shù)運(yùn)行了計(jì)算圖,并打印了結(jié)果。 總之,TensorFlow是一種強(qiáng)大的機(jī)器學(xué)習(xí)框架,支持多種編程語(yǔ)言,其中Python是最常用的。使用TensorFlow進(jìn)行機(jī)器學(xué)習(xí)和深度學(xué)習(xí)任務(wù)非常方便,只需要定義數(shù)據(jù)流圖并使用TensorFlow提供的函數(shù)即可。
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://m.specialneedsforspecialkids.com/yun/130833.html
摘要:近日它們交鋒的戰(zhàn)場(chǎng)就是動(dòng)態(tài)計(jì)算圖,誰(shuí)能在這場(chǎng)戰(zhàn)爭(zhēng)中取得優(yōu)勢(shì),誰(shuí)就把握住了未來(lái)用戶(hù)的流向。所以動(dòng)態(tài)框架對(duì)虛擬計(jì)算圖的構(gòu)建速度有較高的要求。動(dòng)態(tài)計(jì)算圖問(wèn)題之一的多結(jié)構(gòu)輸入問(wèn)題的高效計(jì) 隨著深度學(xué)習(xí)的發(fā)展,深度學(xué)習(xí)框架之間競(jìng)爭(zhēng)也日益激烈,新老框架紛紛各顯神通,想要在廣大DeepLearner的服務(wù)器上占據(jù)一席之地。近日它們交鋒的戰(zhàn)場(chǎng)就是動(dòng)態(tài)計(jì)算圖,誰(shuí)能在這場(chǎng)戰(zhàn)爭(zhēng)中取得優(yōu)勢(shì),誰(shuí)就把握住了未來(lái)用戶(hù)的流...
摘要:的開(kāi)發(fā)環(huán)境有很多,可以在上搭建,也可以使用管理工具搭建,也可以直接在本機(jī)中安裝。例如創(chuàng)建開(kāi)發(fā)環(huán)境點(diǎn)擊左下角,彈出創(chuàng)建開(kāi)發(fā)環(huán)境框,輸入環(huán)境名和選擇類(lèi)型即可。以上內(nèi)容是我們需要搭建開(kāi)發(fā)環(huán)境的全部?jī)?nèi)容。 tensorflow的開(kāi)發(fā)環(huán)境有很多,可以在Docker上搭建,也可以使用Anaconda管理工具搭建,也可以直接在本機(jī)中安裝tensorflow。在這里為了工具包的方便管理,我選擇使用An...
摘要:接下來(lái),介紹了使用深度學(xué)習(xí)的計(jì)算機(jī)視覺(jué)系統(tǒng)在農(nóng)業(yè)零售業(yè)服裝量身定制廣告制造等產(chǎn)業(yè)中的應(yīng)用和趨勢(shì),以及在這些產(chǎn)業(yè)中值得關(guān)注的企業(yè)。 嵌入式視覺(jué)聯(lián)盟主編Brian Dipert今天發(fā)布博文,介紹了2016年嵌入式視覺(jué)峰會(huì)(Embedded Vision Summit)中有關(guān)深度學(xué)習(xí)的內(nèi)容:谷歌工程師Pete Warden介紹如何利用TensorFlow框架,開(kāi)發(fā)為Google Translate...
摘要:幸運(yùn)的是,這些正是深度學(xué)習(xí)所需的計(jì)算類(lèi)型。幾乎可以肯定,英偉達(dá)是目前執(zhí)行深度學(xué)習(xí)任務(wù)較好的選擇。今年夏天,發(fā)布了平臺(tái)提供深度學(xué)習(xí)支持。該工具適用于主流深度學(xué)習(xí)庫(kù)如和。因?yàn)榈暮?jiǎn)潔和強(qiáng)大的軟件包擴(kuò)展體系,它目前是深度學(xué)習(xí)中最常見(jiàn)的語(yǔ)言。 深度學(xué)習(xí)初學(xué)者經(jīng)常會(huì)問(wèn)到這些問(wèn)題:開(kāi)發(fā)深度學(xué)習(xí)系統(tǒng),我們需要什么樣的計(jì)算機(jī)?為什么絕大多數(shù)人會(huì)推薦英偉達(dá) GPU?對(duì)于初學(xué)者而言哪種深度學(xué)習(xí)框架是較好的?如何將...
摘要:下圖總結(jié)了絕大多數(shù)上的開(kāi)源深度學(xué)習(xí)框架項(xiàng)目,根據(jù)項(xiàng)目在的數(shù)量來(lái)評(píng)級(jí),數(shù)據(jù)采集于年月初。然而,近期宣布將轉(zhuǎn)向作為其推薦深度學(xué)習(xí)框架因?yàn)樗С忠苿?dòng)設(shè)備開(kāi)發(fā)。該框架可以出色完成圖像識(shí)別,欺詐檢測(cè)和自然語(yǔ)言處理任務(wù)。 很多神經(jīng)網(wǎng)絡(luò)框架已開(kāi)源多年,支持機(jī)器學(xué)習(xí)和人工智能的專(zhuān)有解決方案也有很多。多年以來(lái),開(kāi)發(fā)人員在Github上發(fā)布了一系列的可以支持圖像、手寫(xiě)字、視頻、語(yǔ)音識(shí)別、自然語(yǔ)言處理、物體檢測(cè)的...
摘要:本報(bào)告面向的讀者是想要進(jìn)入機(jī)器學(xué)習(xí)領(lǐng)域的學(xué)生和正在尋找新框架的專(zhuān)家。其輸入需要重塑為包含個(gè)元素的一維向量以滿(mǎn)足神經(jīng)網(wǎng)絡(luò)。卷積神經(jīng)網(wǎng)絡(luò)目前代表著用于圖像分類(lèi)任務(wù)的較先進(jìn)算法,并構(gòu)成了深度學(xué)習(xí)中的主要架構(gòu)。 初學(xué)者在學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的時(shí)候往往會(huì)有不知道從何處入手的困難,甚至可能不知道選擇什么工具入手才合適。近日,來(lái)自意大利的四位研究者發(fā)布了一篇題為《神經(jīng)網(wǎng)絡(luò)初學(xué)者:在 MATLAB、Torch 和 ...
閱讀 2654·2023-04-26 00:07
閱讀 2437·2021-11-15 11:37
閱讀 649·2021-10-19 11:44
閱讀 2175·2021-09-22 15:56
閱讀 1730·2021-09-10 10:50
閱讀 1506·2021-08-18 10:21
閱讀 2572·2019-08-30 15:53
閱讀 1637·2019-08-30 11:11