国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

使用 TensorFlow Serving 和 Docker 快速部署機器學習服務

endless_road / 2681人閱讀

摘要:從實驗到生產,簡單快速部署機器學習模型一直是一個挑戰。總結上面我們快速實踐了使用和部署機器學習服務的過程,可以看到,提供了非常方便和高效的模型管理,配合,可以快速搭建起機器學習服務。

從實驗到生產,簡單快速部署機器學習模型一直是一個挑戰。這個過程要做的就是將訓練好的模型對外提供預測服務。在生產中,這個過程需要可重現,隔離和安全。這里,我們使用基于Docker的TensorFlow Serving來簡單地完成這個過程。TensorFlow 從1.8版本開始支持Docker部署,包括CPU和GPU,非常方便。

獲得訓練好的模型

獲取模型的第一步當然是訓練一個模型,但是這不是本篇的重點,所以我們使用一個已經訓練好的模型,比如ResNet。TensorFlow Serving 使用SavedModel這種格式來保存其模型,SavedModel是一種獨立于語言的,可恢復,密集的序列化格式,支持使用更高級別的系統和工具來生成,使用和轉換TensorFlow模型。這里我們直接下載一個預訓練好的模型:

$ mkdir /tmp/resnet
$ curl -s https://storage.googleapis.com/download.tensorflow.org/models/official/20181001_resnet/savedmodels/resnet_v2_fp32_savedmodel_NHWC_jpg.tar.gz | tar --strip-components=2 -C /tmp/resnet -xvz

如果是使用其他框架比如Keras生成的模型,則需要將模型轉換為SavedModel格式,比如:

from keras.models import Sequential
from keras import backend as K
import tensorflow as tf

model = Sequential()
# 中間省略模型構建

# 模型轉換為SavedModel
signature = tf.saved_model.signature_def_utils.predict_signature_def(
    inputs={"input_param": model.input}, outputs={"type": model.output})
builder = tf.saved_model.builder.SavedModelBuilder("/tmp/output_model_path/1/")
builder.add_meta_graph_and_variables(
    sess=K.get_session(),
    tags=[tf.saved_model.tag_constants.SERVING],
    signature_def_map={
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            signature
    })
builder.save()

下載完成后,文件目錄樹為:

$ tree /tmp/resnet
/tmp/resnet
└── 1538687457
    ├── saved_model.pb
    └── variables
        ├── variables.data-00000-of-00001
        └── variables.index
部署模型

使用Docker部署模型服務:

$ docker pull tensorflow/serving
$ docker run -p 8500:8500 -p 8501:8501 --name tfserving_resnet 
--mount type=bind,source=/tmp/resnet,target=/models/resnet 
-e MODEL_NAME=resnet -t tensorflow/serving

其中,8500端口對于TensorFlow Serving提供的gRPC端口,8501為REST API服務端口。-e MODEL_NAME=resnet指出TensorFlow Serving需要加載的模型名稱,這里為resnet。上述命令輸出為

2019-03-04 02:52:26.610387: I tensorflow_serving/model_servers/server.cc:82] Building single TensorFlow model file config:  model_name: resnet model_base_path: /models/resnet
2019-03-04 02:52:26.618200: I tensorflow_serving/model_servers/server_core.cc:461] Adding/updating models.
2019-03-04 02:52:26.618628: I tensorflow_serving/model_servers/server_core.cc:558]  (Re-)adding model: resnet
2019-03-04 02:52:26.745813: I tensorflow_serving/core/basic_manager.cc:739] Successfully reserved resources to load servable {name: resnet version: 1538687457}
2019-03-04 02:52:26.745901: I tensorflow_serving/core/loader_harness.cc:66] Approving load for servable version {name: resnet version: 1538687457}
2019-03-04 02:52:26.745935: I tensorflow_serving/core/loader_harness.cc:74] Loading servable version {name: resnet version: 1538687457}
2019-03-04 02:52:26.747590: I external/org_tensorflow/tensorflow/contrib/session_bundle/bundle_shim.cc:363] Attempting to load native SavedModelBundle in bundle-shim from: /models/resnet/1538687457
2019-03-04 02:52:26.747705: I external/org_tensorflow/tensorflow/cc/saved_model/reader.cc:31] Reading SavedModel from: /models/resnet/1538687457
2019-03-04 02:52:26.795363: I external/org_tensorflow/tensorflow/cc/saved_model/reader.cc:54] Reading meta graph with tags { serve }
2019-03-04 02:52:26.828614: I external/org_tensorflow/tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-03-04 02:52:26.923902: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:162] Restoring SavedModel bundle.
2019-03-04 02:52:28.098479: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:138] Running MainOp with key saved_model_main_op on SavedModel bundle.
2019-03-04 02:52:28.144510: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:259] SavedModel load for tags { serve }; Status: success. Took 1396689 microseconds.
2019-03-04 02:52:28.146646: I tensorflow_serving/servables/tensorflow/saved_model_warmup.cc:83] No warmup data file found at /models/resnet/1538687457/assets.extra/tf_serving_warmup_requests
2019-03-04 02:52:28.168063: I tensorflow_serving/core/loader_harness.cc:86] Successfully loaded servable version {name: resnet version: 1538687457}
2019-03-04 02:52:28.174902: I tensorflow_serving/model_servers/server.cc:286] Running gRPC ModelServer at 0.0.0.0:8500 ...
[warn] getaddrinfo: address family for nodename not supported
2019-03-04 02:52:28.186724: I tensorflow_serving/model_servers/server.cc:302] Exporting HTTP/REST API at:localhost:8501 ...
[evhttp_server.cc : 237] RAW: Entering the event loop ...

我們可以看到,TensorFlow Serving使用1538687457作為模型的版本號。我們使用curl命令來查看一下啟動的服務狀態,也可以看到提供服務的模型版本以及模型狀態。

$ curl http://localhost:8501/v1/models/resnet
{
 "model_version_status": [
  {
   "version": "1538687457",
   "state": "AVAILABLE",
   "status": {
    "error_code": "OK",
    "error_message": ""
   }
  }
 ]
}
查看模型輸入輸出

很多時候我們需要查看模型的輸出和輸出參數的具體形式,TensorFlow提供了一個saved_model_cli命令來查看模型的輸入和輸出參數:

$ saved_model_cli show --dir /tmp/resnet/1538687457/ --all

MetaGraphDef with tag-set: "serve" contains the following SignatureDefs:

signature_def["predict"]:
  The given SavedModel SignatureDef contains the following input(s):
    inputs["image_bytes"] tensor_info:
        dtype: DT_STRING
        shape: (-1)
        name: input_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs["classes"] tensor_info:
        dtype: DT_INT64
        shape: (-1)
        name: ArgMax:0
    outputs["probabilities"] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 1001)
        name: softmax_tensor:0
  Method name is: tensorflow/serving/predict

signature_def["serving_default"]:
  The given SavedModel SignatureDef contains the following input(s):
    inputs["image_bytes"] tensor_info:
        dtype: DT_STRING
        shape: (-1)
        name: input_tensor:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs["classes"] tensor_info:
        dtype: DT_INT64
        shape: (-1)
        name: ArgMax:0
    outputs["probabilities"] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 1001)
        name: softmax_tensor:0
  Method name is: tensorflow/serving/predict

注意到signature_definputs的名稱,類型和輸出,這些參數在接下來的模型預測請求中需要。

使用模型接口預測:REST和gRPC

TensorFlow Serving提供REST API和gRPC兩種請求方式,接下來將具體這兩種方式。

REST

我們下載一個客戶端腳本,這個腳本會下載一張貓的圖片,同時使用這張圖片來計算服務請求時間。

$ curl -o /tmp/resnet/resnet_client.py https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/example/resnet_client.py

以下腳本使用requests庫來請求接口,使用圖片的base64編碼字符串作為請求內容,返回圖片分類,并計算了平均處理時間。

from __future__ import print_function

import base64
import requests

# The server URL specifies the endpoint of your server running the ResNet
# model with the name "resnet" and using the predict interface.
SERVER_URL = "http://localhost:8501/v1/models/resnet:predict"

# The image URL is the location of the image we should send to the server
IMAGE_URL = "https://tensorflow.org/images/blogs/serving/cat.jpg"


def main():
  # Download the image
  dl_request = requests.get(IMAGE_URL, stream=True)
  dl_request.raise_for_status()

  # Compose a JSON Predict request (send JPEG image in base64).
  jpeg_bytes = base64.b64encode(dl_request.content).decode("utf-8")
  predict_request = "{"instances" : [{"b64": "%s"}]}" % jpeg_bytes

  # Send few requests to warm-up the model.
  for _ in range(3):
    response = requests.post(SERVER_URL, data=predict_request)
    response.raise_for_status()

  # Send few actual requests and report average latency.
  total_time = 0
  num_requests = 10
  for _ in range(num_requests):
    response = requests.post(SERVER_URL, data=predict_request)
    response.raise_for_status()
    total_time += response.elapsed.total_seconds()
    prediction = response.json()["predictions"][0]

  print("Prediction class: {}, avg latency: {} ms".format(
      prediction["classes"], (total_time*1000)/num_requests))


if __name__ == "__main__":
  main()

輸出結果為

$ python resnet_client.py
Prediction class: 286, avg latency: 210.12310000000002 ms
gRPC

讓我們下載另一個客戶端腳本,這個腳本使用gRPC作為服務,傳入圖片并獲取輸出結果。這個腳本需要安裝tensorflow-serving-api這個庫。

$ curl -o /tmp/resnet/resnet_client_grpc.py https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/example/resnet_client_grpc.py
$ pip install tensorflow-serving-api

腳本內容:

from __future__ import print_function

# This is a placeholder for a Google-internal import.

import grpc
import requests
import tensorflow as tf

from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc

# The image URL is the location of the image we should send to the server
IMAGE_URL = "https://tensorflow.org/images/blogs/serving/cat.jpg"

tf.app.flags.DEFINE_string("server", "localhost:8500",
                           "PredictionService host:port")
tf.app.flags.DEFINE_string("image", "", "path to image in JPEG format")
FLAGS = tf.app.flags.FLAGS


def main(_):
  if FLAGS.image:
    with open(FLAGS.image, "rb") as f:
      data = f.read()
  else:
    # Download the image since we weren"t given one
    dl_request = requests.get(IMAGE_URL, stream=True)
    dl_request.raise_for_status()
    data = dl_request.content

  channel = grpc.insecure_channel(FLAGS.server)
  stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
  # Send request
  # See prediction_service.proto for gRPC request/response details.
  request = predict_pb2.PredictRequest()
  request.model_spec.name = "resnet"
  request.model_spec.signature_name = "serving_default"
  request.inputs["image_bytes"].CopyFrom(
      tf.contrib.util.make_tensor_proto(data, shape=[1]))
  result = stub.Predict(request, 10.0)  # 10 secs timeout
  print(result)


if __name__ == "__main__":
  tf.app.run()

輸出的結果可以看到圖片的分類,概率和使用的模型信息:

$ python resnet_client_grpc.py
outputs {
  key: "classes"
  value {
    dtype: DT_INT64
    tensor_shape {
      dim {
        size: 1
      }
    }
    int64_val: 286
  }
}
outputs {
  key: "probabilities"
  value {
    dtype: DT_FLOAT
    tensor_shape {
      dim {
        size: 1
      }
      dim {
        size: 1001
      }
    }
    float_val: 2.4162832232832443e-06
    float_val: 1.9012182974620373e-06
    float_val: 2.7247710022493266e-05
    float_val: 4.426385658007348e-07
    ...(中間省略)
    float_val: 1.4636580090154894e-05
    float_val: 5.812107133351674e-07
    float_val: 6.599806511076167e-05
    float_val: 0.0012952701654285192
  }
}
model_spec {
  name: "resnet"
  version {
    value: 1538687457
  }
  signature_name: "serving_default"
}
性能 通過編譯優化的TensorFlow Serving二進制來提高性能

TensorFlows serving有時會有輸出如下的日志:

Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA

TensorFlow Serving已發布Docker鏡像旨在盡可能多地使用CPU架構,因此省略了一些優化以最大限度地提高兼容性。如果你沒有看到此消息,則你的二進制文件可能已針對你的CPU進行了優化。根據你的模型執行的操作,這些優化可能會對你的服務性能產生重大影響。幸運的是,編譯優化的TensorFlow Serving二進制非常簡單。官方已經提供了自動化腳本,分以下兩部進行:

# 1. 編譯開發版本
$ docker build -t $USER/tensorflow-serving-devel -f Dockerfile.devel https://github.com/tensorflow/serving.git#:tensorflow_serving/tools/docker

# 2. 生產新的鏡像
$ docker build -t $USER/tensorflow-serving --build-arg TF_SERVING_BUILD_IMAGE=$USER/tensorflow-serving-devel https://github.com/tensorflow/serving.git#:tensorflow_serving/tools/docker

之后,使用新編譯的$USER/tensorflow-serving重新啟動服務即可。

總結

上面我們快速實踐了使用TensorFlow Serving和Docker部署機器學習服務的過程,可以看到,TensorFlow Serving提供了非常方便和高效的模型管理,配合Docker,可以快速搭建起機器學習服務。

參考

Serving ML Quickly with TensorFlow Serving and Docker

Train and serve a TensorFlow model with TensorFlow Serving

GitHub repo: qiwihui/blog

Follow me: @qiwihui

Site: QIWIHUI

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/27704.html

相關文章

  • TensorFlow在產品環境中運行模型的實踐經驗總結

    摘要:它使用機器學習來解釋用戶提出的問題,并用相應的知識庫文章來回應。使用一類目前較先進的機器學習算法來識別相關文章,也就是深度學習。接下來介紹一下我們在生產環境中配置模型的一些經驗。 我們如何開始使用TensorFlow ?在Zendesk,我們開發了一系列機器學習產品,比如的自動答案(Automatic Answers)。它使用機器學習來解釋用戶提出的問題,并用相應的知識庫文章來回應。當用戶有...

    stackfing 評論0 收藏0
  • 使用KubernetesTensorFlow Serving將神經網絡鏡像分類進行彈性擴容

    摘要:大會以機器學習資料中心和云端安全為主要議題,為未來發展做戰略規劃。在年,谷歌開發了一個內部深度學習基礎設施叫做,這個設施允許谷歌人創建更大的神經網絡和擴容實訓成千上萬個核心。 導言 Google近日3月23-24日在美國舊金山舉辦首次谷歌云平臺(Google Cloud Platform) GCP NEXT大會,參會人數超過2000人。GCP NEXT大會以機器學習、資料中心和云端安全...

    Harpsichord1207 評論0 收藏0
  • 滴滴機器學習平臺架構演進

    摘要:滴滴機器學習平臺的治理思路主要是減少重復提高效率。本文將對滴滴的機器學習平臺進行全面解讀,重點分享機器學習平臺不同階段所要解決的問題,以及解決問題的思路和技術方案。綜合和各自的利弊,滴滴機器學習平臺開始由架構向建構遷移。 前言:現在很多互聯網公司都有自己的機器學習平臺,冠以之名雖然形形色色,但就平臺所要解決的問題和技術選型基本還是大同小異。所謂大同是指大家所要處理的問題都相似,技術架構...

    entner 評論0 收藏0

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<