摘要:與通過來自定義監控指標自動擴展是一種根據資源使用情況自動擴展或縮小工作負載的方法。適配器刪除后綴并將度量標記為計數器度量標準。負載測試完成后,會將部署縮到其初始副本您可能已經注意到自動縮放器不會立即對使用峰值做出反應。
k8s與HPA--通過 Prometheus adaptor 來自定義監控指標
自動擴展是一種根據資源使用情況自動擴展或縮小工作負載的方法。 Kubernetes中的自動縮放有兩個維度:Cluster Autoscaler處理節點擴展操作,Horizo??ntal Pod Autoscaler自動擴展部署或副本集中的pod數量。 Cluster Autoscaling與Horizo??ntal Pod Autoscaler一起用于動態調整計算能力以及系統滿足SLA所需的并行度。雖然Cluster Autoscaler高度依賴托管您的集群的云提供商的基礎功能,但HPA可以獨立于您的IaaS / PaaS提供商運營。
Horizo??ntal Pod Autoscaler功能最初是在Kubernetes v1.1中引入的,并且從那時起已經發展了很多。 HPA縮放容器的版本1基于觀察到的CPU利用率,后來基于內存使用情況。在Kubernetes 1.6中,引入了一個新的API Custom Metrics API,使HPA能夠訪問任意指標。 Kubernetes 1.7引入了聚合層,允許第三方應用程序通過將自己注冊為API附加組件來擴展Kubernetes API。 Custom Metrics API和聚合層使Prometheus等監控系統可以向HPA控制器公開特定于應用程序的指標。
Horizo??ntal Pod Autoscaler實現為一個控制循環,定期查詢Resource Metrics API以獲取CPU /內存等核心指標和針對特定應用程序指標的Custom Metrics API。
以下是為Kubernetes 1.9或更高版本配置HPA v2的分步指南。您將安裝提供核心指標的Metrics Server附加組件,然后您將使用演示應用程序根據CPU和內存使用情況展示pod自動擴展。在本指南的第二部分中,您將部署Prometheus和自定義API服務器。您將使用聚合器層注冊自定義API服務器,然后使用演示應用程序提供的自定義指標配置HPA。
在開始之前,您需要安裝Go 1.8或更高版本并在GOPATH中克隆k8s-prom-hpa repo。
cd $GOPATH git clone https://github.com/stefanprodan/k8s-prom-hpa部署 Metrics Server
kubernetes Metrics Server是資源使用數據的集群范圍聚合器,是Heapster的后繼者。度量服務器通過匯集來自kubernetes.summary_api的數據來收集節點和pod的CPU和內存使用情況。摘要API是一種內存高效的API,用于將數據從Kubelet / cAdvisor傳遞到度量服務器。
在HPA的第一個版本中,您需要Heapster來提供CPU和內存指標,在HPA v2和Kubernetes 1.8中,只有在啟用horizo??ntal-pod-autoscaler-use-rest-clients時才需要指標服務器。默認情況下,Kubernetes 1.9中啟用了HPA rest客戶端。 GKE 1.9附帶預安裝的Metrics Server。
在kube-system命名空間中部署Metrics Server:
kubectl create -f ./metrics-server
一分鐘后,度量服務器開始報告節點和pod的CPU和內存使用情況。
查看nodes metrics:
kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes" | jq .
結果如下:
{ "kind": "NodeMetricsList", "apiVersion": "metrics.k8s.io/v1beta1", "metadata": { "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes" }, "items": [ { "metadata": { "name": "ip-10-1-50-61.ec2.internal", "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-10-1-50-61.ec2.internal", "creationTimestamp": "2019-02-13T08:34:05Z" }, "timestamp": "2019-02-13T08:33:38Z", "window": "30s", "usage": { "cpu": "78322168n", "memory": "563180Ki" } }, { "metadata": { "name": "ip-10-1-57-40.ec2.internal", "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-10-1-57-40.ec2.internal", "creationTimestamp": "2019-02-13T08:34:05Z" }, "timestamp": "2019-02-13T08:33:42Z", "window": "30s", "usage": { "cpu": "48926263n", "memory": "554472Ki" } }, { "metadata": { "name": "ip-10-1-62-29.ec2.internal", "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-10-1-62-29.ec2.internal", "creationTimestamp": "2019-02-13T08:34:05Z" }, "timestamp": "2019-02-13T08:33:36Z", "window": "30s", "usage": { "cpu": "36700681n", "memory": "326088Ki" } } ] }
查看pods metrics:
kubectl get --raw "/apis/metrics.k8s.io/v1beta1/pods" | jq .
結果如下:
{ "kind": "PodMetricsList", "apiVersion": "metrics.k8s.io/v1beta1", "metadata": { "selfLink": "/apis/metrics.k8s.io/v1beta1/pods" }, "items": [ { "metadata": { "name": "kube-proxy-77nt2", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-proxy-77nt2", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:00Z", "window": "30s", "containers": [ { "name": "kube-proxy", "usage": { "cpu": "2370555n", "memory": "13184Ki" } } ] }, { "metadata": { "name": "cluster-autoscaler-n2xsl", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/cluster-autoscaler-n2xsl", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:12Z", "window": "30s", "containers": [ { "name": "cluster-autoscaler", "usage": { "cpu": "1477997n", "memory": "54584Ki" } } ] }, { "metadata": { "name": "core-dns-autoscaler-b4785d4d7-j64xd", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/core-dns-autoscaler-b4785d4d7-j64xd", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:08Z", "window": "30s", "containers": [ { "name": "autoscaler", "usage": { "cpu": "191293n", "memory": "7956Ki" } } ] }, { "metadata": { "name": "spot-interrupt-handler-8t2xk", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/spot-interrupt-handler-8t2xk", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:04Z", "window": "30s", "containers": [ { "name": "spot-interrupt-handler", "usage": { "cpu": "844907n", "memory": "4608Ki" } } ] }, { "metadata": { "name": "kube-proxy-t5kqm", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-proxy-t5kqm", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:08Z", "window": "30s", "containers": [ { "name": "kube-proxy", "usage": { "cpu": "1194766n", "memory": "12204Ki" } } ] }, { "metadata": { "name": "kube-proxy-zxmqb", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-proxy-zxmqb", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:06Z", "window": "30s", "containers": [ { "name": "kube-proxy", "usage": { "cpu": "3021117n", "memory": "13628Ki" } } ] }, { "metadata": { "name": "aws-node-rcz5c", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/aws-node-rcz5c", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:15Z", "window": "30s", "containers": [ { "name": "aws-node", "usage": { "cpu": "1217989n", "memory": "24976Ki" } } ] }, { "metadata": { "name": "aws-node-z2qxs", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/aws-node-z2qxs", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:15Z", "window": "30s", "containers": [ { "name": "aws-node", "usage": { "cpu": "1025780n", "memory": "46424Ki" } } ] }, { "metadata": { "name": "php-apache-899d75b96-8ppk4", "namespace": "default", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/default/pods/php-apache-899d75b96-8ppk4", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:08Z", "window": "30s", "containers": [ { "name": "php-apache", "usage": { "cpu": "24612n", "memory": "27556Ki" } } ] }, { "metadata": { "name": "load-generator-779c5f458c-9sglg", "namespace": "default", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/default/pods/load-generator-779c5f458c-9sglg", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:34:56Z", "window": "30s", "containers": [ { "name": "load-generator", "usage": { "cpu": "0", "memory": "336Ki" } } ] }, { "metadata": { "name": "aws-node-v9jxs", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/aws-node-v9jxs", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:00Z", "window": "30s", "containers": [ { "name": "aws-node", "usage": { "cpu": "1303458n", "memory": "28020Ki" } } ] }, { "metadata": { "name": "kube2iam-m2ktt", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube2iam-m2ktt", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:11Z", "window": "30s", "containers": [ { "name": "kube2iam", "usage": { "cpu": "1328864n", "memory": "9724Ki" } } ] }, { "metadata": { "name": "kube2iam-w9cqf", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube2iam-w9cqf", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:03Z", "window": "30s", "containers": [ { "name": "kube2iam", "usage": { "cpu": "1294379n", "memory": "8812Ki" } } ] }, { "metadata": { "name": "custom-metrics-apiserver-657644489c-pk8rb", "namespace": "monitoring", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/monitoring/pods/custom-metrics-apiserver-657644489c-pk8rb", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:04Z", "window": "30s", "containers": [ { "name": "custom-metrics-apiserver", "usage": { "cpu": "22409370n", "memory": "42468Ki" } } ] }, { "metadata": { "name": "kube2iam-qghgt", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube2iam-qghgt", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:11Z", "window": "30s", "containers": [ { "name": "kube2iam", "usage": { "cpu": "2078992n", "memory": "16356Ki" } } ] }, { "metadata": { "name": "spot-interrupt-handler-ps745", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/spot-interrupt-handler-ps745", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:10Z", "window": "30s", "containers": [ { "name": "spot-interrupt-handler", "usage": { "cpu": "611566n", "memory": "4336Ki" } } ] }, { "metadata": { "name": "coredns-68fb7946fb-2xnpp", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/coredns-68fb7946fb-2xnpp", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:12Z", "window": "30s", "containers": [ { "name": "coredns", "usage": { "cpu": "1610381n", "memory": "10480Ki" } } ] }, { "metadata": { "name": "coredns-68fb7946fb-9ctjf", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/coredns-68fb7946fb-9ctjf", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:13Z", "window": "30s", "containers": [ { "name": "coredns", "usage": { "cpu": "1418850n", "memory": "9852Ki" } } ] }, { "metadata": { "name": "prometheus-7d4f6d4454-v4fnd", "namespace": "monitoring", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/monitoring/pods/prometheus-7d4f6d4454-v4fnd", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:00Z", "window": "30s", "containers": [ { "name": "prometheus", "usage": { "cpu": "17951807n", "memory": "202316Ki" } } ] }, { "metadata": { "name": "metrics-server-7cdd54ccb4-k2x7m", "namespace": "kube-system", "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/metrics-server-7cdd54ccb4-k2x7m", "creationTimestamp": "2019-02-13T08:35:19Z" }, "timestamp": "2019-02-13T08:35:04Z", "window": "30s", "containers": [ { "name": "metrics-server-nanny", "usage": { "cpu": "144656n", "memory": "5716Ki" } }, { "name": "metrics-server", "usage": { "cpu": "568327n", "memory": "16268Ki" } } ] } ] }基于CPU和內存使用情況的Auto Scaling
您將使用基于Golang的小型Web應用程序來測試Horizo??ntal Pod Autoscaler(HPA)。
將podinfo部署到默認命名空間:
kubectl create -f ./podinfo/podinfo-svc.yaml,./podinfo/podinfo-dep.yaml
使用NodePort服務訪問podinfo,地址為http://
接下來定義一個至少維護兩個副本的HPA,如果CPU平均值超過80%或內存超過200Mi,則最多可擴展到10個:
apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: podinfo spec: scaleTargetRef: apiVersion: extensions/v1beta1 kind: Deployment name: podinfo minReplicas: 2 maxReplicas: 10 metrics: - type: Resource resource: name: cpu targetAverageUtilization: 80 - type: Resource resource: name: memory targetAverageValue: 200Mi
創建這個hpa:
kubectl create -f ./podinfo/podinfo-hpa.yaml
幾秒鐘后,HPA控制器聯系度量服務器,然后獲取CPU和內存使用情況:
kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE podinfo Deployment/podinfo 2826240 / 200Mi, 15% / 80% 2 10 2 5m
為了增加CPU使用率,請使用rakyll / hey運行負載測試:
#install hey go get -u github.com/rakyll/hey #do 10K requests hey -n 10000 -q 10 -c 5 http://:31198/
您可以使用以下方式監控HPA事件:
$ kubectl describe hpa Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 7m horizontal-pod-autoscaler New size: 4; reason: cpu resource utilization (percentage of request) above target Normal SuccessfulRescale 3m horizontal-pod-autoscaler New size: 8; reason: cpu resource utilization (percentage of request) above target
暫時刪除podinfo。稍后將在本教程中再次部署它:
kubectl delete -f ./podinfo/podinfo-hpa.yaml,./podinfo/podinfo-dep.yaml,./podinfo/podinfo-svc.yaml部署 Custom Metrics Server
要根據自定義指標進行擴展,您需要擁有兩個組件。一個組件,用于從應用程序收集指標并將其存儲在Prometheus時間序列數據庫中。第二個組件使用collect(k8s-prometheus-adapter)提供的指標擴展了Kubernetes自定義指標API。
您將在專用命名空間中部署Prometheus和適配器。
創建monitoring命名空間:
kubectl create -f ./namespaces.yaml
在monitoring命名空間中部署Prometheus v2:
kubectl create -f ./prometheus
生成Prometheus適配器所需的TLS證書:
make certs
生成以下幾個文件:
# ls output apiserver.csr apiserver-key.pem apiserver.pem
部署Prometheus自定義指標API適配器:
kubectl create -f ./custom-metrics-api
列出Prometheus提供的自定義指標:
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1" | jq .
獲取monitoring命名空間中所有pod的FS使用情況:
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/monitoring/pods/*/fs_usage_bytes" | jq .
查詢結果如下:
{ "kind": "MetricValueList", "apiVersion": "custom.metrics.k8s.io/v1beta1", "metadata": { "selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/monitoring/pods/%2A/fs_usage_bytes" }, "items": [ { "describedObject": { "kind": "Pod", "namespace": "monitoring", "name": "custom-metrics-apiserver-657644489c-pk8rb", "apiVersion": "/v1" }, "metricName": "fs_usage_bytes", "timestamp": "2019-02-13T08:52:30Z", "value": "94253056" }, { "describedObject": { "kind": "Pod", "namespace": "monitoring", "name": "prometheus-7d4f6d4454-v4fnd", "apiVersion": "/v1" }, "metricName": "fs_usage_bytes", "timestamp": "2019-02-13T08:52:30Z", "value": "24576" } ] }基于custom metrics 自動伸縮
在默認命名空間中創建podinfo NodePort服務和部署:
kubectl create -f ./podinfo/podinfo-svc.yaml,./podinfo/podinfo-dep.yaml
podinfo應用程序公開名為http_requests_total的自定義指標。 Prometheus適配器刪除_total后綴并將度量標記為計數器度量標準。
從自定義指標API獲取每秒的總請求數:
kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/*/http_requests" | jq .
{ "kind": "MetricValueList", "apiVersion": "custom.metrics.k8s.io/v1beta1", "metadata": { "selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/%2A/http_requests" }, "items": [ { "describedObject": { "kind": "Pod", "namespace": "default", "name": "podinfo-6b86c8ccc9-kv5g9", "apiVersion": "/__internal" }, "metricName": "http_requests", "timestamp": "2018-01-10T16:49:07Z", "value": "901m" }, { "describedObject": { "kind": "Pod", "namespace": "default", "name": "podinfo-6b86c8ccc9-nm7bl", "apiVersion": "/__internal" }, "metricName": "http_requests", "timestamp": "2018-01-10T16:49:07Z", "value": "898m" } ] }
建一個HPA,如果請求數超過每秒10個,將擴展podinfo部署:
apiVersion: autoscaling/v2beta1 kind: HorizontalPodAutoscaler metadata: name: podinfo spec: scaleTargetRef: apiVersion: extensions/v1beta1 kind: Deployment name: podinfo minReplicas: 2 maxReplicas: 10 metrics: - type: Pods pods: metricName: http_requests targetAverageValue: 10
在默認命名空間中部署podinfo HPA:
kubectl create -f ./podinfo/podinfo-hpa-custom.yaml
幾秒鐘后,HPA從指標API獲取http_requests值:
kubectl get hpa NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE podinfo Deployment/podinfo 899m / 10 2 10 2 1m
在podinfo服務上應用一些負載,每秒25個請求:
#install hey go get -u github.com/rakyll/hey #do 10K requests rate limited at 25 QPS hey -n 10000 -q 5 -c 5 http://:31198/healthz
幾分鐘后,HPA開始擴展部署:
kubectl describe hpa Name: podinfo Namespace: default Reference: Deployment/podinfo Metrics: ( current / target ) "http_requests" on pods: 9059m / 10 Min replicas: 2 Max replicas: 10 Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 2m horizontal-pod-autoscaler New size: 3; reason: pods metric http_requests above target
按照當前的每秒請求速率,部署永遠不會達到10個pod的最大值。三個復制品足以使每個吊艙的RPS保持在10以下。
負載測試完成后,HPA會將部署縮到其初始副本:
Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 5m horizontal-pod-autoscaler New size: 3; reason: pods metric http_requests above target Normal SuccessfulRescale 21s horizontal-pod-autoscaler New size: 2; reason: All metrics below target
您可能已經注意到自動縮放器不會立即對使用峰值做出反應。默認情況下,度量標準同步每30秒發生一次,只有在最后3-5分鐘內沒有重新縮放時才能進行擴展/縮小。通過這種方式,HPA可以防止快速執行沖突的決策,并為Cluster Autoscaler提供時間。
結論并非所有系統都可以通過多帶帶依賴CPU /內存使用指標來滿足其SLA,大多數Web和移動后端需要基于每秒請求進行自動擴展以處理任何流量突發。對于ETL應用程序,可以通過作業隊列長度超過某個閾值等來觸發自動縮放。通過使用Prometheus檢測應用程序并公開正確的自動縮放指標,您可以對應用程序進行微調,以更好地處理突發并確保高可用性。
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/28085.html
摘要:與通過來自定義監控指標自動擴展是一種根據資源使用情況自動擴展或縮小工作負載的方法。適配器刪除后綴并將度量標記為計數器度量標準。負載測試完成后,會將部署縮到其初始副本您可能已經注意到自動縮放器不會立即對使用峰值做出反應。 k8s與HPA--通過 Prometheus adaptor 來自定義監控指標 自動擴展是一種根據資源使用情況自動擴展或縮小工作負載的方法。 Kubernetes中的自...
摘要:與通過來自定義監控指標自動擴展是一種根據資源使用情況自動擴展或縮小工作負載的方法。適配器刪除后綴并將度量標記為計數器度量標準。負載測試完成后,會將部署縮到其初始副本您可能已經注意到自動縮放器不會立即對使用峰值做出反應。 k8s與HPA--通過 Prometheus adaptor 來自定義監控指標 自動擴展是一種根據資源使用情況自動擴展或縮小工作負載的方法。 Kubernetes中的自...
摘要:自定義指標由提供,由此可支持任意采集到的指標。文件清單的,收集級別的監控數據監控服務端,從拉數據并存儲為時序數據。本文為容器監控實踐系列文章,完整內容見 概述 上文metric-server提到,kubernetes的監控指標分為兩種: Core metrics(核心指標):從 Kubelet、cAdvisor 等獲取度量數據,再由metrics-server提供給 Dashboar...
摘要:自定義指標由提供,由此可支持任意采集到的指標。文件清單的,收集級別的監控數據監控服務端,從拉數據并存儲為時序數據。本文為容器監控實踐系列文章,完整內容見 概述 上文metric-server提到,kubernetes的監控指標分為兩種: Core metrics(核心指標):從 Kubelet、cAdvisor 等獲取度量數據,再由metrics-server提供給 Dashboar...
摘要:還可以把數據導入到第三方工具展示或使用場景共同組成了一個流行的監控解決方案原生的監控圖表信息來自在中也用到了,將作為,向其獲取,作為水平擴縮容的監控依據監控指標流程首先從獲取集群中所有的信息。 概述 該項目將被廢棄(RETIRED) Heapster是Kubernetes旗下的一個項目,Heapster是一個收集者,并不是采集 1.Heapster可以收集Node節點上的cAdvis...
閱讀 1979·2019-08-30 15:54
閱讀 3605·2019-08-29 13:07
閱讀 3130·2019-08-29 12:39
閱讀 1795·2019-08-26 12:13
閱讀 1553·2019-08-23 18:31
閱讀 2166·2019-08-23 18:05
閱讀 1852·2019-08-23 18:00
閱讀 1051·2019-08-23 17:15