国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

XGboost數據比賽實戰之調參篇(完整流程)

isLishude / 1518人閱讀

摘要:字符串函數名,或是可調用對象,需要其函數簽名形如如果是,則使用的誤差估計函數。運行后的結果為每輪迭代運行結果參數的最佳取值最佳模型得分由輸出結果可知參數的最佳取值。提醒一點,這個分數是根據前面設置的得分函數算出來的,即中的。

這一篇博客的內容是在上一篇博客Scikit中的特征選擇,XGboost進行回歸預測,模型優化的實戰的基礎上進行調參優化的,所以在閱讀本篇博客之前,請先移步看一下上一篇文章。

我前面所做的工作基本都是關于特征選擇的,這里我想寫的是關于XGBoost參數調整的一些小經驗。之前我在網站上也看到很多相關的內容,基本是翻譯自一篇英文的博客,更坑的是很多文章步驟講的不完整,新人看了很容易一頭霧水。由于本人也是一個新手,在這過程中也踩了很多大坑,希望這篇博客能夠幫助到大家!下面,就進入正題吧。


首先,很幸運的是,Scikit-learn中提供了一個函數可以幫助我們更好地進行調參:

sklearn.model_selection.GridSearchCV

常用參數解讀:

estimator:所使用的分類器,如果比賽中使用的是XGBoost的話,就是生成的model。比如: model = xgb.XGBRegressor(**other_params)

param_grid:值為字典或者列表,即需要最優化的參數的取值。比如:cv_params = {"n_estimators": [550, 575, 600, 650, 675]}

scoring :準確度評價標準,默認None,這時需要使用score函數;或者如scoring="roc_auc",根據所選模型不同,評價準則不同。字符串(函數名),或是可調用對象,需要其函數簽名形如:scorer(estimator, X, y);如果是None,則使用estimator的誤差估計函數。scoring參數選擇如下:

具體參考地址:http://scikit-learn.org/stable/modules/model_evaluation.html

這次實戰我使用的是r2這個得分函數,當然大家也可以根據自己的實際需要來選擇。

調參剛開始的時候,一般要先初始化一些值:

learning_rate: 0.1

n_estimators: 500

max_depth: 5

min_child_weight: 1

subsample: 0.8

colsample_bytree:0.8

gamma: 0

reg_alpha: 0

reg_lambda: 1

鏈接:XGBoost常用參數一覽表

你可以按照自己的實際情況來設置初始值,上面的也只是一些經驗之談吧。

調參的時候一般按照以下順序來進行:

1、最佳迭代次數:n_estimators

if __name__ == "__main__":
    trainFilePath = "dataset/soccer/train.csv"
    testFilePath = "dataset/soccer/test.csv"
    data = pd.read_csv(trainFilePath)
    X_train, y_train = featureSet(data)
    X_test = loadTestData(testFilePath)

    cv_params = {"n_estimators": [400, 500, 600, 700, 800]}
    other_params = {"learning_rate": 0.1, "n_estimators": 500, "max_depth": 5, "min_child_weight": 1, "seed": 0,
                    "subsample": 0.8, "colsample_bytree": 0.8, "gamma": 0, "reg_alpha": 0, "reg_lambda": 1}

    model = xgb.XGBRegressor(**other_params)
    optimized_GBM = GridSearchCV(estimator=model, param_grid=cv_params, scoring="r2", cv=5, verbose=1, n_jobs=4)
    optimized_GBM.fit(X_train, y_train)
    evalute_result = optimized_GBM.grid_scores_
    print("每輪迭代運行結果:{0}".format(evalute_result))
    print("參數的最佳取值:{0}".format(optimized_GBM.best_params_))
    print("最佳模型得分:{0}".format(optimized_GBM.best_score_))

寫到這里,需要提醒大家,在代碼中有一處很關鍵:

model = xgb.XGBRegressor(**other_params)兩個*號千萬不能省略!可能很多人不注意,再加上網上很多教程估計是從別人那里直接拷貝,沒有運行結果,所以直接就用了 model = xgb.XGBRegressor(other_params)悲劇的是,如果直接這樣運行的話,會報如下錯誤:

xgboost.core.XGBoostError: b"Invalid Parameter format for max_depth expect int but value...

不信,請看鏈接:xgboost issue

以上是血的教訓啊,自己不運行一遍代碼,永遠不知道會出現什么Bug!

運行后的結果為:

[Parallel(n_jobs=4)]: Done  25 out of  25 | elapsed:  1.5min finished
每輪迭代運行結果:[mean: 0.94051, std: 0.01244, params: {"n_estimators": 400}, mean: 0.94057, std: 0.01244, params: {"n_estimators": 500}, mean: 0.94061, std: 0.01230, params: {"n_estimators": 600}, mean: 0.94060, std: 0.01223, params: {"n_estimators": 700}, mean: 0.94058, std: 0.01231, params: {"n_estimators": 800}]
參數的最佳取值:{"n_estimators": 600}
最佳模型得分:0.9406056804545407

由輸出結果可知最佳迭代次數為600次。但是,我們還不能認為這是最終的結果,由于設置的間隔太大,所以,我又測試了一組參數,這次粒度小一些:

 cv_params = {"n_estimators": [550, 575, 600, 650, 675]}
    other_params = {"learning_rate": 0.1, "n_estimators": 600, "max_depth": 5, "min_child_weight": 1, "seed": 0,
                    "subsample": 0.8, "colsample_bytree": 0.8, "gamma": 0, "reg_alpha": 0, "reg_lambda": 1}

運行后的結果為:

[Parallel(n_jobs=4)]: Done  25 out of  25 | elapsed:  1.5min finished
每輪迭代運行結果:[mean: 0.94065, std: 0.01237, params: {"n_estimators": 550}, mean: 0.94064, std: 0.01234, params: {"n_estimators": 575}, mean: 0.94061, std: 0.01230, params: {"n_estimators": 600}, mean: 0.94060, std: 0.01226, params: {"n_estimators": 650}, mean: 0.94060, std: 0.01224, params: {"n_estimators": 675}]
參數的最佳取值:{"n_estimators": 550}
最佳模型得分:0.9406545392685364

果不其然,最佳迭代次數變成了550。有人可能會問,那還要不要繼續縮小粒度測試下去呢?這個我覺得可以看個人情況,如果你想要更高的精度,當然是粒度越小,結果越準確,大家可以自己慢慢去調試,我在這里就不一一去做了。

2、接下來要調試的參數是min_child_weight以及max_depth

注意:每次調完一個參數,要把 other_params對應的參數更新為最優值。

 cv_params = {"max_depth": [3, 4, 5, 6, 7, 8, 9, 10], "min_child_weight": [1, 2, 3, 4, 5, 6]}
    other_params = {"learning_rate": 0.1, "n_estimators": 550, "max_depth": 5, "min_child_weight": 1, "seed": 0,
                    "subsample": 0.8, "colsample_bytree": 0.8, "gamma": 0, "reg_alpha": 0, "reg_lambda": 1}

運行后的結果為:

[Parallel(n_jobs=4)]: Done  42 tasks      | elapsed:  1.7min
[Parallel(n_jobs=4)]: Done 192 tasks      | elapsed: 12.3min
[Parallel(n_jobs=4)]: Done 240 out of 240 | elapsed: 17.2min finished
每輪迭代運行結果:[mean: 0.93967, std: 0.01334, params: {"min_child_weight": 1, "max_depth": 3}, mean: 0.93826, std: 0.01202, params: {"min_child_weight": 2, "max_depth": 3}, mean: 0.93739, std: 0.01265, params: {"min_child_weight": 3, "max_depth": 3}, mean: 0.93827, std: 0.01285, params: {"min_child_weight": 4, "max_depth": 3}, mean: 0.93680, std: 0.01219, params: {"min_child_weight": 5, "max_depth": 3}, mean: 0.93640, std: 0.01231, params: {"min_child_weight": 6, "max_depth": 3}, mean: 0.94277, std: 0.01395, params: {"min_child_weight": 1, "max_depth": 4}, mean: 0.94261, std: 0.01173, params: {"min_child_weight": 2, "max_depth": 4}, mean: 0.94276, std: 0.01329...]
參數的最佳取值:{"min_child_weight": 5, "max_depth": 4}
最佳模型得分:0.94369522247392

由輸出結果可知參數的最佳取值:{"min_child_weight": 5, "max_depth": 4}。(代碼輸出結果被我省略了一部分,因為結果太長了,以下也是如此)

3、接著我們就開始調試參數:gamma:

cv_params = {"gamma": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]}
    other_params = {"learning_rate": 0.1, "n_estimators": 550, "max_depth": 4, "min_child_weight": 5, "seed": 0,
                    "subsample": 0.8, "colsample_bytree": 0.8, "gamma": 0, "reg_alpha": 0, "reg_lambda": 1}

運行后的結果為:

[Parallel(n_jobs=4)]: Done  30 out of  30 | elapsed:  1.5min finished
每輪迭代運行結果:[mean: 0.94370, std: 0.01010, params: {"gamma": 0.1}, mean: 0.94370, std: 0.01010, params: {"gamma": 0.2}, mean: 0.94370, std: 0.01010, params: {"gamma": 0.3}, mean: 0.94370, std: 0.01010, params: {"gamma": 0.4}, mean: 0.94370, std: 0.01010, params: {"gamma": 0.5}, mean: 0.94370, std: 0.01010, params: {"gamma": 0.6}]
參數的最佳取值:{"gamma": 0.1}
最佳模型得分:0.94369522247392

由輸出結果可知參數的最佳取值:{"gamma": 0.1}。

4、接著是subsample以及colsample_bytree:

cv_params = {"subsample": [0.6, 0.7, 0.8, 0.9], "colsample_bytree": [0.6, 0.7, 0.8, 0.9]}
    other_params = {"learning_rate": 0.1, "n_estimators": 550, "max_depth": 4, "min_child_weight": 5, "seed": 0,
                    "subsample": 0.8, "colsample_bytree": 0.8, "gamma": 0.1, "reg_alpha": 0, "reg_lambda": 1}

運行后的結果顯示參數的最佳取值:{"subsample": 0.7,"colsample_bytree": 0.7}

5、緊接著就是:reg_alpha以及reg_lambda:

 cv_params = {"reg_alpha": [0.05, 0.1, 1, 2, 3], "reg_lambda": [0.05, 0.1, 1, 2, 3]}
    other_params = {"learning_rate": 0.1, "n_estimators": 550, "max_depth": 4, "min_child_weight": 5, "seed": 0,
                    "subsample": 0.7, "colsample_bytree": 0.7, "gamma": 0.1, "reg_alpha": 0, "reg_lambda": 1}

運行后的結果為:

[Parallel(n_jobs=4)]: Done  42 tasks      | elapsed:  2.0min
[Parallel(n_jobs=4)]: Done 125 out of 125 | elapsed:  5.6min finished
每輪迭代運行結果:[mean: 0.94169, std: 0.00997, params: {"reg_alpha": 0.01, "reg_lambda": 0.01}, mean: 0.94112, std: 0.01086, params: {"reg_alpha": 0.01, "reg_lambda": 0.05}, mean: 0.94153, std: 0.01093, params: {"reg_alpha": 0.01, "reg_lambda": 0.1}, mean: 0.94400, std: 0.01090, params: {"reg_alpha": 0.01, "reg_lambda": 1}, mean: 0.93820, std: 0.01177, params: {"reg_alpha": 0.01, "reg_lambda": 100}, mean: 0.94194, std: 0.00936, params: {"reg_alpha": 0.05, "reg_lambda": 0.01}, mean: 0.94136, std: 0.01122, params: {"reg_alpha": 0.05, "reg_lambda": 0.05}, mean: 0.94164, std: 0.01120...]
參數的最佳取值:{"reg_alpha": 1, "reg_lambda": 1}
最佳模型得分:0.9441561344357595

由輸出結果可知參數的最佳取值:{"reg_alpha": 1, "reg_lambda": 1}。

6、最后就是learning_rate,一般這時候要調小學習率來測試:

cv_params = {"learning_rate": [0.01, 0.05, 0.07, 0.1, 0.2]}
    other_params = {"learning_rate": 0.1, "n_estimators": 550, "max_depth": 4, "min_child_weight": 5, "seed": 0,
                    "subsample": 0.7, "colsample_bytree": 0.7, "gamma": 0.1, "reg_alpha": 1, "reg_lambda": 1}

運行后的結果為:

[Parallel(n_jobs=4)]: Done  25 out of  25 | elapsed:  1.1min finished
每輪迭代運行結果:[mean: 0.93675, std: 0.01080, params: {"learning_rate": 0.01}, mean: 0.94229, std: 0.01138, params: {"learning_rate": 0.05}, mean: 0.94110, std: 0.01066, params: {"learning_rate": 0.07}, mean: 0.94416, std: 0.01037, params: {"learning_rate": 0.1}, mean: 0.93985, std: 0.01109, params: {"learning_rate": 0.2}]
參數的最佳取值:{"learning_rate": 0.1}
最佳模型得分:0.9441561344357595

由輸出結果可知參數的最佳取值:{"learning_rate": 0.1}

我們可以很清楚地看到,隨著參數的調優,最佳模型得分是不斷提高的,這也從另一方面驗證了調優確實是起到了一定的作用。不過,我們也可以注意到,其實最佳分數并沒有提升太多。提醒一點,這個分數是根據前面設置的得分函數算出來的,即:

optimized_GBM = GridSearchCV(estimator=model, param_grid=cv_params, scoring="r2", cv=5, verbose=1, n_jobs=4)

中的scoring="r2"。在實際情境中,我們可能需要利用各種不同的得分函數來評判模型的好壞。

最后,我們把得到的最佳參數組合扔到模型里訓練,就可以得到預測的結果了:

def trainandTest(X_train, y_train, X_test):
    # XGBoost訓練過程,下面的參數就是剛才調試出來的最佳參數組合
    model = xgb.XGBRegressor(learning_rate=0.1, n_estimators=550, max_depth=4, min_child_weight=5, seed=0,
                             subsample=0.7, colsample_bytree=0.7, gamma=0.1, reg_alpha=1, reg_lambda=1)
    model.fit(X_train, y_train)

    # 對測試集進行預測
    ans = model.predict(X_test)

    ans_len = len(ans)
    id_list = np.arange(10441, 17441)
    data_arr = []
    for row in range(0, ans_len):
        data_arr.append([int(id_list[row]), ans[row]])
    np_data = np.array(data_arr)

    # 寫入文件
    pd_data = pd.DataFrame(np_data, columns=["id", "y"])
    # print(pd_data)
    pd_data.to_csv("submit.csv", index=None)

    # 顯示重要特征
    # plot_importance(model)
    # plt.show()

好了,調參的過程到這里就基本結束了。正如我在上面提到的一樣,其實調參對于模型準確率的提高有一定的幫助,但這是有限的。最重要的還是要通過數據清洗,特征選擇,特征融合,模型融合等手段來進行改進!

下面我就貼出完整代碼(聲明一點,我的代碼質量不是很好,大家參考一下思路就行):

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @File  : soccer_value.py
# @Author: Huangqinjian
# @Date  : 2018/3/22
# @Desc  :

import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn import preprocessing
from sklearn import metrics
from sklearn.preprocessing import Imputer
from sklearn.grid_search import GridSearchCV
from hyperopt import hp

# 加載訓練數據
def featureSet(data):
    imputer = Imputer(missing_values="NaN", strategy="mean", axis=0)
    imputer.fit(data.loc[:, ["rw", "st", "lw", "cf", "cam", "cm"]])
    x_new = imputer.transform(data.loc[:, ["rw", "st", "lw", "cf", "cam", "cm"]])

    le = preprocessing.LabelEncoder()
    le.fit(["Low", "Medium", "High"])
    att_label = le.transform(data.work_rate_att.values)
    # print(att_label)
    def_label = le.transform(data.work_rate_def.values)
    # print(def_label)

    data_num = len(data)
    XList = []
    for row in range(0, data_num):
        tmp_list = []
        tmp_list.append(data.iloc[row]["club"])
        tmp_list.append(data.iloc[row]["league"])
        tmp_list.append(data.iloc[row]["potential"])
        tmp_list.append(data.iloc[row]["international_reputation"])
        tmp_list.append(data.iloc[row]["pac"])
        tmp_list.append(data.iloc[row]["sho"])
        tmp_list.append(data.iloc[row]["pas"])
        tmp_list.append(data.iloc[row]["dri"])
        tmp_list.append(data.iloc[row]["def"])
        tmp_list.append(data.iloc[row]["phy"])
        tmp_list.append(data.iloc[row]["skill_moves"])
        tmp_list.append(x_new[row][0])
        tmp_list.append(x_new[row][1])
        tmp_list.append(x_new[row][2])
        tmp_list.append(x_new[row][3])
        tmp_list.append(x_new[row][4])
        tmp_list.append(x_new[row][5])
        tmp_list.append(att_label[row])
        tmp_list.append(def_label[row])
        XList.append(tmp_list)
    yList = data.y.values
    return XList, yList

# 加載測試數據
def loadTestData(filePath):
    data = pd.read_csv(filepath_or_buffer=filePath)
    imputer = Imputer(missing_values="NaN", strategy="mean", axis=0)
    imputer.fit(data.loc[:, ["rw", "st", "lw", "cf", "cam", "cm"]])
    x_new = imputer.transform(data.loc[:, ["rw", "st", "lw", "cf", "cam", "cm"]])

    le = preprocessing.LabelEncoder()
    le.fit(["Low", "Medium", "High"])
    att_label = le.transform(data.work_rate_att.values)
    # print(att_label)
    def_label = le.transform(data.work_rate_def.values)
    # print(def_label)

    data_num = len(data)
    XList = []
    for row in range(0, data_num):
        tmp_list = []
        tmp_list.append(data.iloc[row]["club"])
        tmp_list.append(data.iloc[row]["league"])
        tmp_list.append(data.iloc[row]["potential"])
        tmp_list.append(data.iloc[row]["international_reputation"])
        tmp_list.append(data.iloc[row]["pac"])
        tmp_list.append(data.iloc[row]["sho"])
        tmp_list.append(data.iloc[row]["pas"])
        tmp_list.append(data.iloc[row]["dri"])
        tmp_list.append(data.iloc[row]["def"])
        tmp_list.append(data.iloc[row]["phy"])
        tmp_list.append(data.iloc[row]["skill_moves"])
        tmp_list.append(x_new[row][0])
        tmp_list.append(x_new[row][1])
        tmp_list.append(x_new[row][2])
        tmp_list.append(x_new[row][3])
        tmp_list.append(x_new[row][4])
        tmp_list.append(x_new[row][5])
        tmp_list.append(att_label[row])
        tmp_list.append(def_label[row])
        XList.append(tmp_list)
    return XList


def trainandTest(X_train, y_train, X_test):
    # XGBoost訓練過程
    model = xgb.XGBRegressor(learning_rate=0.1, n_estimators=550, max_depth=4, min_child_weight=5, seed=0,
                             subsample=0.7, colsample_bytree=0.7, gamma=0.1, reg_alpha=1, reg_lambda=1)
    model.fit(X_train, y_train)

    # 對測試集進行預測
    ans = model.predict(X_test)

    ans_len = len(ans)
    id_list = np.arange(10441, 17441)
    data_arr = []
    for row in range(0, ans_len):
        data_arr.append([int(id_list[row]), ans[row]])
    np_data = np.array(data_arr)

    # 寫入文件
    pd_data = pd.DataFrame(np_data, columns=["id", "y"])
    # print(pd_data)
    pd_data.to_csv("submit.csv", index=None)

    # 顯示重要特征
    # plot_importance(model)
    # plt.show()


if __name__ == "__main__":
    trainFilePath = "dataset/soccer/train.csv"
    testFilePath = "dataset/soccer/test.csv"
    data = pd.read_csv(trainFilePath)
    X_train, y_train = featureSet(data)
    X_test = loadTestData(testFilePath)
    # 預測最終的結果
    # trainandTest(X_train, y_train, X_test)

    """
    下面部分為調試參數的代碼
    """

    #
    # cv_params = {"n_estimators": [400, 500, 600, 700, 800]}
    # other_params = {"learning_rate": 0.1, "n_estimators": 500, "max_depth": 5, "min_child_weight": 1, "seed": 0,
    #                 "subsample": 0.8, "colsample_bytree": 0.8, "gamma": 0, "reg_alpha": 0, "reg_lambda": 1}
    #
    # cv_params = {"n_estimators": [550, 575, 600, 650, 675]}
    # other_params = {"learning_rate": 0.1, "n_estimators": 600, "max_depth": 5, "min_child_weight": 1, "seed": 0,
    #                 "subsample": 0.8, "colsample_bytree": 0.8, "gamma": 0, "reg_alpha": 0, "reg_lambda": 1}
    #
    # cv_params = {"max_depth": [3, 4, 5, 6, 7, 8, 9, 10], "min_child_weight": [1, 2, 3, 4, 5, 6]}
    # other_params = {"learning_rate": 0.1, "n_estimators": 550, "max_depth": 5, "min_child_weight": 1, "seed": 0,
    #                 "subsample": 0.8, "colsample_bytree": 0.8, "gamma": 0, "reg_alpha": 0, "reg_lambda": 1}
    #
    # cv_params = {"gamma": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]}
    # other_params = {"learning_rate": 0.1, "n_estimators": 550, "max_depth": 4, "min_child_weight": 5, "seed": 0,
    #                 "subsample": 0.8, "colsample_bytree": 0.8, "gamma": 0, "reg_alpha": 0, "reg_lambda": 1}
    #
    # cv_params = {"subsample": [0.6, 0.7, 0.8, 0.9], "colsample_bytree": [0.6, 0.7, 0.8, 0.9]}
    # other_params = {"learning_rate": 0.1, "n_estimators": 550, "max_depth": 4, "min_child_weight": 5, "seed": 0,
    #                 "subsample": 0.8, "colsample_bytree": 0.8, "gamma": 0.1, "reg_alpha": 0, "reg_lambda": 1}
    #
    # cv_params = {"reg_alpha": [0.05, 0.1, 1, 2, 3], "reg_lambda": [0.05, 0.1, 1, 2, 3]}
    # other_params = {"learning_rate": 0.1, "n_estimators": 550, "max_depth": 4, "min_child_weight": 5, "seed": 0,
    #                 "subsample": 0.7, "colsample_bytree": 0.7, "gamma": 0.1, "reg_alpha": 0, "reg_lambda": 1}
    #
    # cv_params = {"learning_rate": [0.01, 0.05, 0.07, 0.1, 0.2]}
    # other_params = {"learning_rate": 0.1, "n_estimators": 550, "max_depth": 4, "min_child_weight": 5, "seed": 0,
    #                 "subsample": 0.7, "colsample_bytree": 0.7, "gamma": 0.1, "reg_alpha": 1, "reg_lambda": 1}
    #
    # model = xgb.XGBRegressor(**other_params)
    # optimized_GBM = GridSearchCV(estimator=model, param_grid=cv_params, scoring="r2", cv=5, verbose=1, n_jobs=4)
    # optimized_GBM.fit(X_train, y_train)
    # evalute_result = optimized_GBM.grid_scores_
    # print("每輪迭代運行結果:{0}".format(evalute_result))
    # print("參數的最佳取值:{0}".format(optimized_GBM.best_params_))
    # print("最佳模型得分:{0}".format(optimized_GBM.best_score_))

更多干貨,歡迎去聽我的GitChat:

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/28478.html

相關文章

  • XGboost數據比賽實戰之調參篇(完整流程)

    摘要:字符串函數名,或是可調用對象,需要其函數簽名形如如果是,則使用的誤差估計函數。運行后的結果為每輪迭代運行結果參數的最佳取值最佳模型得分由輸出結果可知參數的最佳取值。提醒一點,這個分數是根據前面設置的得分函數算出來的,即中的。 這一篇博客的內容是在上一篇博客Scikit中的特征選擇,XGboost進行回歸預測,模型優化的實戰的基礎上進行調參優化的,所以在閱讀本篇博客之前,請先移步看一下上...

    cppprimer 評論0 收藏0
  • XGboost數據比賽實戰之調參篇(完整流程)

    摘要:字符串函數名,或是可調用對象,需要其函數簽名形如如果是,則使用的誤差估計函數。運行后的結果為每輪迭代運行結果參數的最佳取值最佳模型得分由輸出結果可知參數的最佳取值。提醒一點,這個分數是根據前面設置的得分函數算出來的,即中的。 這一篇博客的內容是在上一篇博客Scikit中的特征選擇,XGboost進行回歸預測,模型優化的實戰的基礎上進行調參優化的,所以在閱讀本篇博客之前,請先移步看一下上...

    draveness 評論0 收藏0
  • XGboost數據比賽實戰之調參篇(完整流程)

    摘要:字符串函數名,或是可調用對象,需要其函數簽名形如如果是,則使用的誤差估計函數。運行后的結果為每輪迭代運行結果參數的最佳取值最佳模型得分由輸出結果可知參數的最佳取值。提醒一點,這個分數是根據前面設置的得分函數算出來的,即中的。 這一篇博客的內容是在上一篇博客Scikit中的特征選擇,XGboost進行回歸預測,模型優化的實戰的基礎上進行調參優化的,所以在閱讀本篇博客之前,請先移步看一下上...

    wuaiqiu 評論0 收藏0
  • 采用 Python 機器學習預測足球比賽結果

    摘要:采用機器學習預測足球比賽結果足球是世界上最火爆的運動之一,世界杯期間也往往是球迷們最亢奮的時刻。特征工程在機器學習中占有非常重要的作用,一般認為括特征構建特征提取特征選擇三大部分。 采用 Python 機器學習預測足球比賽結果 足球是世界上最火爆的運動之一,世界杯期間也往往是球迷們最亢奮的時刻。比賽狂歡季除了炸出了熬夜看球的鐵桿粉絲,也讓足球競猜也成了大家茶余飯后最熱衷的話題。甚至連原...

    FrancisSoung 評論0 收藏0

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<