国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

Essential_SQLAlchemy2th學習筆記之Core模塊

avwu / 1530人閱讀

摘要:可以看作是很多對象的集合,還有一些關于的信息。相關類定義在基礎的模塊中,比如最常用的三個它也支持同時定義多個形成聯合主鍵。使用獲取單行單列結果時需要注意,如果返回多于一行,它會拋出異常。比如違反唯一性約束等。

SQL Expression Language對原生SQL語言進行了簡單的封裝
兩大模塊SQLAlchemy Core and ORM:

Core:提供執行SQL Expression Language的接口

ORM

安裝:SQLAlchemy及相關數據庫驅動
pip install sqlalchemy pymysql

連接到數據庫

數據庫連接字符串格式:請參考這里

mysql://username:password@hostname/database
postgresql://username:password@hostname/database
sqlite:////absolute/path/to/database
oracle://scott:tiger@127.0.0.1:1521/orcl

比如SQLite如下:

from sqlalchemy import create_engine
engine = create_engine("sqlite:///cookies.db")
engine2 = create_engine("sqlite:///:memory:")
engine3 = create_engine("sqlite:////home/cookiemonster/cookies.db")
engine4 = create_engine("sqlite:///c:Userscookiemonstercookies.db")

注意:create_engine函數返回以一個engine實例,但是不會立即獲取數據庫連接,直到在engine上進行操作如查詢時才會去獲取connection

關于MySQL空閑連接8小時自動關閉的解決方案:傳入 pool_recycle=3600參數

from sqlalchemy import create_engine
engine = create_engine("mysql+pymysql://cookiemonster:chocolatechip@mysql01.monster.internal/cookies", pool_recycle=3600)

create_engine其余的一些參數:

echo:是否log打印執行的sql語句及其參數。默認為False

encoding:默認utf-8

isolation_level:隔離級別

pool_recycle:指定連接回收間隔,這對于MySQL連接的8小時機制特別重要。默認-1

獲取連接

from sqlalchemy import create_engine
engine = create_engine("mysql+pymysql://cookiemonster:chocolatechip" 
"@mysql01.monster.internal/cookies", pool_recycle=3600)
connection = engine.connect()
Schema and Types

四種類型集合:
? Generic
? SQL standard
? Vendor specific
? User defined

SQLAlchemy定義了很多generic types以兼容不同數據庫。這些類型都定義在sqlalchemy.types模塊中,為了方便也可以從sqlalchemy直接導入這些類型。
類型對應表如下:

SQLAlchemy Python SQL
BigInteger int BIGINT
Boolean bool BOOLEAN or SMALLINT
Date datetime.date DATE (SQLite: STRING)
DateTime datetime.datetime DATETIME (SQLite: STRING)
Enum str ENUM or VARCHAR
Float float or Decimal FLOAT or REAL
Integer int INTEGER
Interval datetime.timedelta INTERVAL or DATE from epoch
LargeBinary byte BLOB or BYTEA
Numeric decimal.Decimal NUMERIC or DECIMAL
Unicode unicode UNICODE or VARCHAR
Text str CLOB or TEXT
Time datetime.time DATETIME

如果這些類型不能滿足你,比如有些數據庫支持json類型,那么你需要用到sqlalchemy.dialects模塊中對應數據庫的類型。比如from sqlalchemy.dialects.postgresql import JSON

Metadata & Table & Column

Metadata為了快速訪問數據庫。可以看作是很多Table對象的集合,還有一些關于engin,connection的信息。可以通過MetaData.tables訪問這些表對象字典
定義表對象之前需要先實例化Metadata:

from sqlalchemy import MetaData
metadata = MetaData()

Table對象構建如下:第一個參數為名稱,第二個參數為Metadata對象,后續參數為Column對象. Column對象參數為,名稱,類型,及其余等

from sqlalchemy import Table, Column, Integer, Numeric, String, ForeignKey
cookies = Table("cookies", metadata,
Column("cookie_id", Integer(), primary_key=True),
Column("cookie_name", String(50), index=True),
Column("cookie_recipe_url", String(255)),
Column("cookie_sku", String(55)),
Column("quantity", Integer()),
Column("unit_cost", Numeric(12, 2))
)
from datetime import datetime
from sqlalchemy import DateTime
users = Table("users", metadata,
Column("user_id", Integer(), primary_key=True),
Column("username", String(15), nullable=False, unique=True),
Column("email_address", String(255), nullable=False),
Column("phone", String(20), nullable=False),
Column("password", String(25), nullable=False),
Column("created_on", DateTime(), default=datetime.now),
Column("updated_on", DateTime(), default=datetime.now, onupdate=datetime.now)

注意:這里default,onupdate屬性是一個callable對象而不是直接值,比如datetime.now(),因為這樣的話,就永遠是這個值,而不是每個實例實例化、更新時的時間了。
比較有用的就是onupdate,每次更新時都會調用該方法或函數。

鍵和約束(Keys and Constraints)
鍵和約束既可以像上面那樣通過kwargs定義在Column中,也可以在之后通過對象添加。相關類定義在基礎的 sqlalchemy模塊中,比如最常用的三個:
from sqlalchemy import PrimaryKeyConstraint, UniqueConstraint, CheckConstraint

PrimaryKeyConstraint("user_id", name="user_pk"),它也支持同時定義多個形成聯合主鍵。
UniqueConstraint("username", name="uix_username")
CheckConstraint("unit_cost >= 0.00", name="unit_cost_positive")

索引(Index)

from sqlalchemy import Index
Index("ix_cookies_cookie_name", "cookie_name")

這個定義需要放置在Table構造器中。也可以在之后定義,比如
Index("ix_test", mytable.c.cookie_sku, mytable.c.cookie_name))

關聯關系和外鍵約束(Relationships and ForeignKeyConstraints)

from sqlalchemy import ForeignKey
orders = Table("orders", metadata,
Column("order_id", Integer(), primary_key=True),
Column("user_id", ForeignKey("users.user_id")),
Column("shipped", Boolean(), default=False)
)
line_items = Table("line_items", metadata,
Column("line_items_id", Integer(), primary_key=True),
Column("order_id", ForeignKey("orders.order_id")),
Column("cookie_id", ForeignKey("cookies.cookie_id")),
Column("quantity", Integer()),
Column("extended_cost", Numeric(12, 2))
)

注意:這里ForeignKey用的是字符串參數(這些字符串對應的是數據庫中的表名.列名),而非引用。這樣隔離了模塊間相互依賴
我們也可以使用:
ForeignKeyConstraint(["order_id"], ["orders.order_id"])

創建或持久化表模式(Persisting the Tables)
通過示例代碼我們知道所有的Table定義,以及額外的模式定義都會與一個metadata對象關聯。我們可以通過這個metadata對象來創建表:

metadata.create_all(engine)

注意:默認情況下create_all不會重新創建已有表,所以它可以安全地多次調用,而且也非常友好地與數據庫遷移庫如Ablembic集成而不需要你進行額外手動編碼。

本節代碼完整如下:

from datetime import datetime
from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String,
DateTime, ForeignKey, create_engine)
metadata = MetaData()
cookies = Table("cookies", metadata,
Column("cookie_id", Integer(), primary_key=True),
Column("cookie_name", String(50), index=True),
Column("cookie_recipe_url", String(255)),
Column("cookie_sku", String(55)),
Column("quantity", Integer()),
Column("unit_cost", Numeric(12, 2))
)
users = Table("users", metadata,
Column("user_id", Integer(), primary_key=True),
Column("customer_number", Integer(), autoincrement=True),
Column("username", String(15), nullable=False, unique=True),
Column("email_address", String(255), nullable=False),
Column("phone", String(20), nullable=False),
Column("password", String(25), nullable=False),
Column("created_on", DateTime(), default=datetime.now),
Column("updated_on", DateTime(), default=datetime.now, onupdate=datetime.now)
)
orders = Table("orders", metadata,
Column("order_id", Integer(), primary_key=True),
Column("user_id", ForeignKey("users.user_id"))
)
line_items = Table("line_items", metadata,
Column("line_items_id", Integer(), primary_key=True),
Column("order_id", ForeignKey("orders.order_id")),
Column("cookie_id", ForeignKey("cookies.cookie_id")),
Column("quantity", Integer()),
Column("extended_cost", Numeric(12, 2))
)
engine = create_engine("sqlite:///:memory:")
metadata.create_all(engine)
SQLAlchemy-Core模塊 插入數據:
ins = cookies.insert().values(
cookie_name="chocolate chip",
cookie_recipe_url="http://some.aweso.me/cookie/recipe.html",
cookie_sku="CC01",
quantity="12",
unit_cost="0.50"
)
print(str(ins))

當然你也可以這么做:

from sqlalchemy import insert
ins = insert(cookies).values(
cookie_name="chocolate chip",
cookie_recipe_url="http://some.aweso.me/cookie/recipe.html",
cookie_sku="CC01",
quantity="12",
unit_cost="0.50"
)

上述編譯成預編譯語句如下:

INSERT INTO cookies
(cookie_name, cookie_recipe_url, cookie_sku, quantity, unit_cost)
VALUES
(:cookie_name, :cookie_recipe_url, :cookie_sku, :quantity, :unit_cost)

實際過程會是如下ins對象內部會調用compile()方法編譯成上述語句,然后將參數存儲到ins.compile().params字典中。
接下來我們通過前面獲取的connection對象執行statement:

result = connection.execute(ins)

當然你也可以這么查詢:

ins = cookies.insert()
result = connection.execute(
ins,
cookie_name="dark chocolate chip",
cookie_recipe_url="http://some.aweso.me/cookie/recipe_dark.html",
cookie_sku="CC02",
quantity="1",
unit_cost="0.75"
)
result.inserted_primary_key
批量插入:
inventory_list = [
{
"cookie_name": "peanut butter",
"cookie_recipe_url": "http://some.aweso.me/cookie/peanut.html",
"cookie_sku": "PB01",
"quantity": "24",
"unit_cost": "0.25"
},
{
"cookie_name": "oatmeal raisin",
"cookie_recipe_url": "http://some.okay.me/cookie/raisin.html",
"cookie_sku": "EWW01",
"quantity": "100",
"unit_cost": "1.00"
}
]
result = connection.execute(ins, inventory_list)

注意:一定要確保所有字典參數擁有相同的keys

查詢
from sqlalchemy.sql import select
s = select([cookies])
rp = connection.execute(s)
results = rp.fetchall()

當然我們也可以使用字符串來代替:

s = select("""SELECT cookies.cookie_id, cookies.cookie_name,
cookies.cookie_recipe_url, cookies.cookie_sku, cookies.quantity,
cookies.unit_cost FROM cookies""")

connection.execute返回的rp變量是一個ResultProxy對象(它是DBAPI中cursor對象的封裝)。

我們也可以這樣寫:

from sqlalchemy.sql import select
s = cookies.select()
rp = connection.execute(s)
results = rp.fetchall()

ResultProxy使得查詢結果可以通過index,name,or Column object訪問列數據。例如:

first_row = results[0]
first_row[1] #游標列索引從1開始,by index
first_row.cookie_name # by name
first_row[cookies.c.cookie_name] #by Column object.

你也可以迭代ResultProxy,如下:

rp = connection.execute(s)
for record in rp:
print(record.cookie_name)

ResultProxy其余可用來獲取結果集的方法

first()

fetchone()

fetchall()

scalar():Returns a single value if a query results in a single record with one column.

keys() 獲取列名

關于選擇ResultProxy上述的方法的建議:
1、使用first()而不是fetchone()來獲取單條記錄,因為fetchone()調用之后仍然保留著打開的connections共后續使用,如果不小心的話很容易引起問題。
2、使用迭代方式獲取所有結果,而不是fetchall(),更加省內存。
3、使用scalar()獲取單行單列結果時需要注意,如果返回多于一行,它會拋出異常。

控制返回列的數目

s = select([cookies.c.cookie_name, cookies.c.quantity])
rp = connection.execute(s)
print(rp.keys())
result = rp.first()

排序

s = select([cookies.c.cookie_name, cookies.c.quantity])
s = s.order_by(cookies.c.quantity)
rp = connection.execute(s)
for cookie in rp:
print("{} - {}".format(cookie.quantity, cookie.cookie_name))

#倒序desc
from sqlalchemy import desc
s = select([cookies.c.cookie_name, cookies.c.quantity])
s = s.order_by(desc(cookies.c.quantity))

限制返回結果集的條數

s = select([cookies.c.cookie_name, cookies.c.quantity])
s = s.order_by(cookies.c.quantity)
s = s.limit(2)
rp = connection.execute(s)
print([result.cookie_name for result in rp])
內置SQL函數

在sqlalchemy.sql.func模塊中

#sum
from sqlalchemy.sql import func
s = select([func.sum(cookies.c.quantity)])
rp = connection.execute(s)
print(rp.scalar())

#count
s = select([func.count(cookies.c.cookie_name)])
rp = connection.execute(s)
record = rp.first()
print(record.keys())
print(record.count_1) #字段名是自動生成的,_,可以設置別名的,看下面

#設置別名
s = select([func.count(cookies.c.cookie_name).label("inventory_count")])
rp = connection.execute(s)
record = rp.first()
print(record.keys())
print(record.inventory_count)

過濾

#where
s = select([cookies]).where(cookies.c.cookie_name == "chocolate chip")
rp = connection.execute(s)
record = rp.first()
print(record.items()) #調用row對象的items()方法。

#like
s = select([cookies]).where(cookies.c.cookie_name.like("%chocolate%"))
rp = connection.execute(s)
for record in rp.fetchall():
    print(record.cookie_name)

可以在where中使用的子句元素

between(cleft, cright)

concat(column_two) Concatenate column with column_two

distinct()

in_([list])

is_(None) Find where the column is None (commonly used for Null checks with None)

contains(string) Find where the column has string in it (case-sensitive)

endswith(string) Find where the column ends with string (case-sensitive)

like(string) Find where the column is like string (case-sensitive)

startswith(string) Find where the column begins with string (case-sensitive)

ilike(string) Find where the column is like string (this is not case-sensitive)

當然還包括一系列的notxxx方法,比如notin_(),唯一的例外是isnot()

操作符

+,-,*,/,%

==,!=,<,>,<=,>=

AND,OR,NOT,由于python關鍵字的原因,使用and_(),or_(),not_()來代替

+號還可以用于字符串拼接:

s = select([cookies.c.cookie_name, "SKU-" + cookies.c.cookie_sku])
for row in connection.execute(s):
print(row)
from sqlalchemy import cast
s = select([cookies.c.cookie_name,
    cast((cookies.c.quantity * cookies.c.unit_cost),
        Numeric(12,2)).label("inv_cost")])
for row in connection.execute(s):
    print("{} - {}".format(row.cookie_name, row.inv_cost))

注意:cast是另外一個函數,允許我們進行類型轉換,上述轉換是將數字轉換為貨幣形式,和
print("{} - {:.2f}".format(row.cookie_name, row.inv_cost)).這個行為一致。

from sqlalchemy import and_, or_, not_
s = select([cookies]).where(
    and_(
        cookies.c.quantity > 23,
        cookies.c.unit_cost < 0.40
    )
)
for row in connection.execute(s):
    print(row.cookie_name)


from sqlalchemy import and_, or_, not_
s = select([cookies]).where(
    or_(
        cookies.c.quantity.between(10, 50),
        cookies.c.cookie_name.contains("chip")
    )
)
for row in connection.execute(s):
    print(row.cookie_name)
update
from sqlalchemy import update
u = update(cookies).where(cookies.c.cookie_name == "chocolate chip")
u = u.values(quantity=(cookies.c.quantity + 120))
result = connection.execute(u)
print(result.rowcount)
s = select([cookies]).where(cookies.c.cookie_name == "chocolate chip")
result = connection.execute(s).first()
for key in result.keys():
    print("{:>20}: {}".format(key, result[key]))
delete
from sqlalchemy import delete
u = delete(cookies).where(cookies.c.cookie_name == "dark chocolate chip")
result = connection.execute(u)
print(result.rowcount)

s = select([cookies]).where(cookies.c.cookie_name == "dark chocolate chip")
result = connection.execute(s).fetchall()
print(len(result))
joins

join(),outerjoin()函數,select_from()函數

columns = [orders.c.order_id, users.c.username, users.c.phone,
           cookies.c.cookie_name, line_items.c.quantity,
           line_items.c.extended_cost]
cookiemon_orders = select(columns)
cookiemon_orders = cookiemon_orders.select_from(orders.join(users).join(
    line_items).join(cookies)).where(users.c.username ==
                                     "cookiemon")
result = connection.execute(cookiemon_orders).fetchall()
for row in result:
    print(row)

最終產生的SQL語句如下:

SELECT orders.order_id, users.username, users.phone, cookies.cookie_name,
line_items.quantity, line_items.extended_cost FROM users JOIN orders ON
users.user_id = orders.user_id JOIN line_items ON orders.order_id =
line_items.order_id JOIN cookies ON cookies.cookie_id = line_items.cookie_id
WHERE users.username = :username_1

outerjoin

columns = [users.c.username, func.count(orders.c.order_id)]
all_orders = select(columns)
all_orders = all_orders.select_from(users.outerjoin(orders))
all_orders = all_orders.group_by(users.c.username)
result = connection.execute(all_orders).fetchall()
for row in result:
    print(row)

表別名函數alias()

>>> manager = employee_table.alias("mgr")
>>> stmt = select([employee_table.c.name],
            ... and_(employee_table.c.manager_id==manager.c.id,
            ... manager.c.name=="Fred"))
>>> print(stmt)
SELECT employee.name
FROM employee, employee AS mgr
WHERE employee.manager_id = mgr.id AND mgr.name = ?
分組
columns = [users.c.username, func.count(orders.c.order_id)]
all_orders = select(columns)
all_orders = all_orders.select_from(users.outerjoin(orders))
all_orders = all_orders.group_by(users.c.username)
result = connection.execute(all_orders).fetchall()
for row in result:
    print(row)
chaining
def get_orders_by_customer(cust_name, shipped=None, details=False):
    columns = [orders.c.order_id, users.c.username, users.c.phone]
    joins = users.join(orders)
    if details:
        columns.extend([cookies.c.cookie_name, line_items.c.quantity,
            line_items.c.extended_cost])
        joins = joins.join(line_items).join(cookies)
    cust_orders = select(columns)
    cust_orders = cust_orders.select_from(joins)

    cust_orders = cust_orders.where(users.c.username == cust_name)
    if shipped is not None:
        cust_orders = cust_orders.where(orders.c.shipped == shipped)
    result = connection.execute(cust_orders).fetchall()
    return result
執行原生SQL

返回的還是ResultProxy對象
1、完全采用原始SQL

result = connection.execute("select * from orders").fetchall()
print(result)

2、部分采用原始SQL,text()函數

from sqlalchemy import text
stmt = select([users]).where(text("username="cookiemon""))
print(connection.execute(stmt).fetchall())
異常

SQLALchemy定義了很多異常。我們通過關心:AttributeErrors,IntegrityErrors.等
為了進行相關試驗與說明,請先執行下面這些語句

from datetime import datetime
from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String,
                        DateTime, ForeignKey, Boolean, create_engine,
                        CheckConstraint)
metadata = MetaData()
cookies = Table("cookies", metadata,
                Column("cookie_id", Integer(), primary_key=True),
                37
                Column("cookie_name", String(50), index=True),
                Column("cookie_recipe_url", String(255)),
                Column("cookie_sku", String(55)),
                Column("quantity", Integer()),
                Column("unit_cost", Numeric(12, 2)),
                CheckConstraint("quantity > 0", name="quantity_positive")
                )
users = Table("users", metadata,
              Column("user_id", Integer(), primary_key=True),
              Column("username", String(15), nullable=False, unique=True),
              Column("email_address", String(255), nullable=False),
              Column("phone", String(20), nullable=False),
              Column("password", String(25), nullable=False),
              Column("created_on", DateTime(), default=datetime.now),
              Column("updated_on", DateTime(),
                     default=datetime.now, onupdate=datetime.now)
              )
orders = Table("orders", metadata,
               Column("order_id", Integer()),
               Column("user_id", ForeignKey("users.user_id")),
               Column("shipped", Boolean(), default=False)
               )
line_items = Table("line_items", metadata,
                   Column("line_items_id", Integer(), primary_key=True),
                   Column("order_id", ForeignKey("orders.order_id")),
                   Column("cookie_id", ForeignKey("cookies.cookie_id")),
                   Column("quantity", Integer()),
                   Column("extended_cost", Numeric(12, 2))
                   )
engine = create_engine("sqlite:///:memory:")
metadata.create_all(engine)
connection = engine.connect()
from sqlalchemy import select, insert
ins = insert(users).values(
username="cookiemon",
email_address="mon@cookie.com",
phone="111-111-1111",
password="password"
)
result = connection.execute(ins)
s = select([users.c.username])
results = connection.execute(s)
for result in results:
print(result.username)
print(result.password) #此處包AttributeError異常

在違反約束的情況下會出現IntegrityError異常。比如違反唯一性約束等。

s = select([users.c.username])
connection.execute(s).fetchall()
[(u"cookiemon",)]
ins = insert(users).values(
    username="cookiemon",
    email_address="damon@cookie.com",
    phone="111-111-1111",
    password="password"
)
result = connection.execute(ins) #此處報IntegrityError, UNIQUE constraint failed: users.username
#異常處理
try:
    result = connection.execute(ins)
except IntegrityError as error:
    print(error.orig.message, error.params)

所有的SQLAlchemy異常處理方式都是上面那種思路,通過[SQLAlchemyError](http://docs.sqlal
chemy.org/en/latest/core/exceptions.html)可以獲取到的信息由如下:

orig :The DBAPI exception object.

params:The parameter list being used when this exception occurred.

statement :The string SQL statement being invoked when this exception occurred.

事務Transactions
from sqlalchemy.exc import IntegrityError


def ship_it(order_id):
    s = select([line_items.c.cookie_id, line_items.c.quantity])
    s = s.where(line_items.c.order_id == order_id)
    transaction = connection.begin() #開啟事務
    cookies_to_ship = connection.execute(s).fetchall()
    try:
        for cookie in cookies_to_ship:
            u = update(cookies).where(cookies.c.cookie_id == cookie.cookie_id)
            u = u.values(quantity=cookies.c.quantity - cookie.quantity)
            result = connection.execute(u)
        u = update(orders).where(orders.c.order_id == order_id)
        u = u.values(shipped=True)
        result = connection.execute(u)
        print("Shipped order ID: {}".format(order_id))
        transaction.commit() #提交事務
    except IntegrityError as error:
        transaction.rollback()   #事務回滾
        print(error)

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/38265.html

相關文章

  • Essential SQLAlchemy2th學習筆記反射Reflection

    摘要:基于反射對象進行查詢模塊反射這里我們不再使用而是使用擴展模塊的獲取所有的對象名獲取表對象進行操作反射關聯關系可以反射并建立表之間的但是建立關聯列的命名為例如關于更多信息請詳細參看官方文檔 示例數據庫下載:http://chinookdatabase.codepl...在SQLALchemy中,我們使用反射技術來獲取相關database schema信息,如tables,views,in...

    NSFish 評論0 收藏0
  • Essential SQLAlchemy2th學習筆記自動生成代碼

    摘要:支持從現有數據庫自動生成代碼,并支持一對多,一對一,多對多的關聯關系。生成整個庫的代碼指定表保存到指定文件 pip install sqlacodegen sqlacodegen支持從現有數據庫自動生成ORM代碼,并支持一對多,一對一,多對多的關聯關系。 #生成整個庫的代碼 sqlacodegen sqlite:///Chinook_Sqlite.sqlite #指定表 sqlacod...

    Sleepy 評論0 收藏0
  • Essential SQLAlchemy2th學習筆記Alembic數據庫遷移

    摘要:默認的可以增量式創建數據庫缺失的表,但是無法做到修改已有的表結構,或刪除代碼中已經移除的表。這個時候我們就需要用到這個庫。 SQLAlchemy默認的create_all()可以增量式創建數據庫缺失的表,但是無法做到修改已有的表結構,或刪除代碼中已經移除的表。這個時候我們就需要用到Alembic這個SQLAlchemy migrations庫。安裝:pip install alembi...

    cartoon 評論0 收藏0
  • Essential SQLAlchemy2th學習筆記ORM模塊

    摘要:你應該使用工廠類來創建類,因為這確保了配置參數的正確性。對象包含創建數據庫連接所需的一切信息,它不會立即創建連接對象,而是會在我們進行具體操作時創建。注意生產環境不要使用這個選項。關于選擇的最佳實踐使用迭代方式獲取所有值,而不是。 定義模式Defining Schema 定義ORM類的4個步驟: 繼承declarative_base()函數返回的類 定義__tablename__屬性...

    JasonZhang 評論0 收藏0
  • Java9模塊學習筆記遷移到Java9

    摘要:命令行參數文件鑒于遷移到后可能需要很長的命令行參數,有些會限制命令行長度,支持定義一個命令行參數文件。已有三分庫可以自動轉成模塊,只要在啟動時將放在指定路徑中,便會自動變成。 java[c]命令行參數文件 鑒于遷移到java9后可能需要很長的命令行參數,有些os會限制命令行長度,java9支持定義一個命令行參數文件。使用方式: java @arguments.txt arguments...

    NeverSayNever 評論0 收藏0

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<