摘要:內容如下是我們準備爬的初始頁這個是解析函數,如果不特別指明的話,抓回來的頁面會由這個函數進行解析。爬取多個頁面的原理相同,注意解析翻頁的地址設定終止條件指定好對應的頁面解析函數即可。后面的數字表示的是優先級。指明每兩個請求之間的間隔。
序
本文主要內容:以最短的時間寫一個最簡單的爬蟲,可以抓取論壇的帖子標題和帖子內容。
本文受眾:沒寫過爬蟲的萌新。
入門 0.準備工作需要準備的東西: Python、scrapy、一個IDE或者隨便什么文本編輯工具。
1.技術部已經研究決定了,你來寫爬蟲。隨便建一個工作目錄,然后用命令行建立一個工程,工程名為miao,可以替換為你喜歡的名字。
scrapy startproject miao
隨后你會得到如下的一個由scrapy創建的目錄結構
在spiders文件夾中創建一個python文件,比如miao.py,來作為爬蟲的腳本。
內容如下:
import scrapy class NgaSpider(scrapy.Spider): name = "NgaSpider" host = "http://bbs.ngacn.cc/" # start_urls是我們準備爬的初始頁 start_urls = [ "http://bbs.ngacn.cc/thread.php?fid=406", ] # 這個是解析函數,如果不特別指明的話,scrapy抓回來的頁面會由這個函數進行解析。 # 對頁面的處理和分析工作都在此進行,這個示例里我們只是簡單地把頁面內容打印出來。 def parse(self, response): print response.body2.跑一個試試?
如果用命令行的話就這樣:
cd miao scrapy crawl NgaSpider
你可以看到爬蟲君已經把你壇星際區第一頁打印出來了,當然由于沒有任何處理,所以混雜著html標簽和js腳本都一并打印出來了。
解析接下來我們要把剛剛抓下來的頁面進行分析,從這坨html和js堆里把這一頁的帖子標題提煉出來。
其實解析頁面是個體力活,方法多的是,這里只介紹xpath。
看一下剛才抓下來的那坨東西,或者用chrome瀏覽器手動打開那個頁面然后按F12可以看到頁面結構。
每個標題其實都是由這么一個html標簽包裹著的。舉個例子:
[合作模式] 合作模式修改設想
可以看到href就是這個帖子的地址(當然前面要拼上論壇地址),而這個標簽包裹的內容就是帖子的標題了。
于是我們用xpath的絕對定位方法,把class="topic"的部分摘出來。
在最上面加上引用:
from scrapy import Selector
把parse函數改成:
def parse(self, response): selector = Selector(response) # 在此,xpath會將所有class=topic的標簽提取出來,當然這是個list # 這個list里的每一個元素都是我們要找的html標簽 content_list = selector.xpath("http://*[@class="topic"]") # 遍歷這個list,處理每一個標簽 for content in content_list: # 此處解析標簽,提取出我們需要的帖子標題。 topic = content.xpath("string(.)").extract_first() print topic # 此處提取出帖子的url地址。 url = self.host + content.xpath("@href").extract_first() print url
再次運行就可以看到輸出你壇星際區第一頁所有帖子的標題和url了。
遞歸接下來我們要抓取每一個帖子的內容。
這里需要用到python的yield。
yield Request(url=url, callback=self.parse_topic)
此處會告訴scrapy去抓取這個url,然后把抓回來的頁面用指定的parse_topic函數進行解析。
至此我們需要定義一個新的函數來分析一個帖子里的內容。
完整的代碼如下:
import scrapy from scrapy import Selector from scrapy import Request class NgaSpider(scrapy.Spider): name = "NgaSpider" host = "http://bbs.ngacn.cc/" # 這個例子中只指定了一個頁面作為爬取的起始url # 當然從數據庫或者文件或者什么其他地方讀取起始url也是可以的 start_urls = [ "http://bbs.ngacn.cc/thread.php?fid=406", ] # 爬蟲的入口,可以在此進行一些初始化工作,比如從某個文件或者數據庫讀入起始url def start_requests(self): for url in self.start_urls: # 此處將起始url加入scrapy的待爬取隊列,并指定解析函數 # scrapy會自行調度,并訪問該url然后把內容拿回來 yield Request(url=url, callback=self.parse_page) # 版面解析函數,解析一個版面上的帖子的標題和地址 def parse_page(self, response): selector = Selector(response) content_list = selector.xpath("http://*[@class="topic"]") for content in content_list: topic = content.xpath("string(.)").extract_first() print topic url = self.host + content.xpath("@href").extract_first() print url # 此處,將解析出的帖子地址加入待爬取隊列,并指定解析函數 yield Request(url=url, callback=self.parse_topic) # 可以在此處解析翻頁信息,從而實現爬取版區的多個頁面 # 帖子的解析函數,解析一個帖子的每一樓的內容 def parse_topic(self, response): selector = Selector(response) content_list = selector.xpath("http://*[@class="postcontent ubbcode"]") for content in content_list: content = content.xpath("string(.)").extract_first() print content # 可以在此處解析翻頁信息,從而實現爬取帖子的多個頁面
到此為止,這個爬蟲可以爬取你壇第一頁所有的帖子的標題,并爬取每個帖子里第一頁的每一層樓的內容。
爬取多個頁面的原理相同,注意解析翻頁的url地址、設定終止條件、指定好對應的頁面解析函數即可。
此處是對已抓取、解析后的內容的處理,可以通過管道寫入本地文件、數據庫。
0.定義一個Item在miao文件夾中創建一個items.py文件。
from scrapy import Item, Field class TopicItem(Item): url = Field() title = Field() author = Field() class ContentItem(Item): url = Field() content = Field() author = Field()
此處我們定義了兩個簡單的class來描述我們爬取的結果。
1. 寫一個處理方法在miao文件夾下面找到那個pipelines.py文件,scrapy之前應該已經自動生成好了。
我們可以在此建一個處理方法。
class FilePipeline(object): ## 爬蟲的分析結果都會由scrapy交給此函數處理 def process_item(self, item, spider): if isinstance(item, TopicItem): ## 在此可進行文件寫入、數據庫寫入等操作 pass if isinstance(item, ContentItem): ## 在此可進行文件寫入、數據庫寫入等操作 pass ## ... return item2.在爬蟲中調用這個處理方法。
要調用這個方法我們只需在爬蟲中調用即可,例如原先的內容處理函數可改為:
def parse_topic(self, response): selector = Selector(response) content_list = selector.xpath("http://*[@class="postcontent ubbcode"]") for content in content_list: content = content.xpath("string(.)").extract_first() ## 以上是原內容 ## 創建個ContentItem對象把我們爬取的東西放進去 item = ContentItem() item["url"] = response.url item["content"] = content item["author"] = "" ## 略 ## 這樣調用就可以了 ## scrapy會把這個item交給我們剛剛寫的FilePipeline來處理 yield item3.在配置文件里指定這個pipeline
找到settings.py文件,在里面加入
ITEM_PIPELINES = { "miao.pipelines.FilePipeline": 400, }
這樣在爬蟲里調用
yield item
的時候都會由經這個FilePipeline來處理。后面的數字400表示的是優先級。
可以在此配置多個Pipeline,scrapy會根據優先級,把item依次交給各個item來處理,每個處理完的結果會傳遞給下一個pipeline來處理。
可以這樣配置多個pipeline:
ITEM_PIPELINES = { "miao.pipelines.Pipeline00": 400, "miao.pipelines.Pipeline01": 401, "miao.pipelines.Pipeline02": 402, "miao.pipelines.Pipeline03": 403, ## ... }Middleware——中間件
通過Middleware我們可以對請求信息作出一些修改,比如常用的設置UA、代理、登錄信息等等都可以通過Middleware來配置。
0.Middleware的配置與pipeline的配置類似,在setting.py中加入Middleware的名字,例如
DOWNLOADER_MIDDLEWARES = { "miao.middleware.UserAgentMiddleware": 401, "miao.middleware.ProxyMiddleware": 402, }1.破網站查UA, 我要換UA
某些網站不帶UA是不讓訪問的。
在miao文件夾下面建立一個middleware.py
import random agents = [ "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/532.5 (KHTML, like Gecko) Chrome/4.0.249.0 Safari/532.5", "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US) AppleWebKit/532.9 (KHTML, like Gecko) Chrome/5.0.310.0 Safari/532.9", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) AppleWebKit/534.7 (KHTML, like Gecko) Chrome/7.0.514.0 Safari/534.7", "Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) AppleWebKit/534.14 (KHTML, like Gecko) Chrome/9.0.601.0 Safari/534.14", "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.14 (KHTML, like Gecko) Chrome/10.0.601.0 Safari/534.14", "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.20 (KHTML, like Gecko) Chrome/11.0.672.2 Safari/534.20", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/534.27 (KHTML, like Gecko) Chrome/12.0.712.0 Safari/534.27", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/13.0.782.24 Safari/535.1", ] class UserAgentMiddleware(object): def process_request(self, request, spider): agent = random.choice(agents) request.headers["User-Agent"] = agent
這里就是一個簡單的隨機更換UA的中間件,agents的內容可以自行擴充。
2.破網站封IP,我要用代理比如本地127.0.0.1開啟了一個8123端口的代理,同樣可以通過中間件配置讓爬蟲通過這個代理來對目標網站進行爬取。
同樣在middleware.py中加入:
class ProxyMiddleware(object): def process_request(self, request, spider): # 此處填寫你自己的代理 # 如果是買的代理的話可以去用API獲取代理列表然后隨機選擇一個 proxy = "http://127.0.0.1:8123" request.meta["proxy"] = proxy
很多網站會對訪問次數進行限制,如果訪問頻率過高的話會臨時禁封IP。
如果需要的話可以從網上購買IP,一般服務商會提供一個API來獲取當前可用的IP池,選一個填到這里就好。
在settings.py中的一些常用配置
# 間隔時間,單位秒。指明scrapy每兩個請求之間的間隔。 DOWNLOAD_DELAY = 5 # 當訪問異常時是否進行重試 RETRY_ENABLED = True # 當遇到以下http狀態碼時進行重試 RETRY_HTTP_CODES = [500, 502, 503, 504, 400, 403, 404, 408] # 重試次數 RETRY_TIMES = 5 # Pipeline的并發數。同時最多可以有多少個Pipeline來處理item CONCURRENT_ITEMS = 200 # 并發請求的最大數 CONCURRENT_REQUESTS = 100 # 對一個網站的最大并發數 CONCURRENT_REQUESTS_PER_DOMAIN = 50 # 對一個IP的最大并發數 CONCURRENT_REQUESTS_PER_IP = 50我就是要用Pycharm
如果非要用Pycharm作為開發調試工具的話可以在運行配置里進行如下配置:
Configuration頁面:
Script填你的scrapy的cmdline.py路徑,比如我的是
/usr/local/lib/python2.7/dist-packages/scrapy/cmdline.py
然后在Scrpit parameters中填爬蟲的名字,本例中即為:
crawl NgaSpider
最后是Working diretory,找到你的settings.py文件,填這個文件所在的目錄。
示例:
按小綠箭頭就可以愉快地調試了。
參考這里提供了對scrapy非常詳細的介紹。
http://scrapy-chs.readthedocs...
以下是幾個比較重要的地方:
scrapy的架構:
http://scrapy-chs.readthedocs...
xpath語法:
http://www.w3school.com.cn/xp...
Pipeline管道配置:
http://scrapy-chs.readthedocs...
Middleware中間件的配置:
http://scrapy-chs.readthedocs...
settings.py的配置:
http://scrapy-chs.readthedocs...
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/38351.html
摘要:自阮大神的文章發布以來,有了一些改動,添加有很多有用的功能,特別是這個功能,對打造命令行工具集合非常有用,所以寫一個新版本的教程還是有必要的。 前言 使用命令行程序對程序員來說很常見,就算是前端工程師或者開發gui的,也需要使用命令行來編譯程序或者打包程序 熟練使用命令行工具能極大的提高開發效率,linux自帶的命令行工具都非常的有用,但是這些工具都是按照通用需求開發出來的,如果有一些...
摘要:本文即以簡單的回歸擬合為例,從最基礎的庫安裝數據導入數據預處理到模型訓練模型預測介紹了如何使用進行簡單的機器學習任務。 前端每周清單第 18 期:Firefox、Chrome、React、Angular發布新版本;提升RN應用性能的方法 為InfoQ中文站特供稿件,首發地址為這里;如需轉載,請與InfoQ中文站聯系。從屬于筆者的 Web 前端入門與工程實踐的前端每周清單系列系列;部分...
摘要:監測字符串變化聲明字符串輸入變化的獲取對象更新顯示數據事件監聽通過監聽鍵盤輸入的變化,當鍵盤彈起時,調用函數。 (Node+Vue+微信公眾號開發)企業級產品全棧開發速成周末班首期班(10.28號正式開班,歡迎搶座) 作者:?liyuechun 簡介:JavaScript30 是 Wes Bos 推出的一個 30 天挑戰。項目免費提供了 30 個視頻教程、30 個挑戰的起始文檔和 3...
摘要:從今天起,我將在這里更新一個系列的簡單爬蟲到建立網站的實踐手記。內容將會從最簡單的開始,環境搭建,基本爬蟲,入庫,用建立可供用戶訪問的網站,網站部署。第一部分,買,裝環境。我們爬蟲站點的所有文件都放在里面。 從今天起,我將在這里更新一個系列的python簡單爬蟲到建立網站的實踐手記。 內容將會從最簡單的開始,環境搭建,基本爬蟲,入庫,用Django建立可供用戶訪問的網站,網站部署。 ...
閱讀 3197·2019-08-30 15:55
閱讀 2955·2019-08-30 13:46
閱讀 1456·2019-08-29 17:29
閱讀 3526·2019-08-29 11:08
閱讀 3450·2019-08-29 11:04
閱讀 1097·2019-08-28 18:20
閱讀 555·2019-08-26 13:37
閱讀 1341·2019-08-26 11:49