摘要:在這里匯總了一個現在和經常使用的論文,所有文章都鏈接到了上面。如果你對感興趣,可以訪問這個專題。作者微信號簡書地址是一個專注于算法實戰的平臺,從基礎的算法到人工智能算法都有設計。加入實戰微信群,實戰群,算法微信群,算法群。
作者:chen_h
微信號 & QQ:862251340
微信公眾號:coderpai
簡書地址:https://www.jianshu.com/p/b7f...
關于生成對抗網絡(GAN)的新論文每周都會出現很多,跟蹤發現他們非常難,更不用說去辨別那些研究人員對 GAN 各種奇奇怪怪,令人難以置信的創造性的命名!當然,你可以通過閱讀 OpanAI 的博客或者 KDNuggets 中的概述性閱讀教程,了解更多的有關 GAN 的信息。
在這里匯總了一個現在和經常使用的GAN論文,所有文章都鏈接到了 Arxiv 上面。
GAN?—?Generative Adversarial Networks
3D-GAN?—?Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
AC-GAN?—?Conditional Image Synthesis With Auxiliary Classifier GANs
AdaGAN?—?AdaGAN: Boosting Generative Models
AffGAN?—?Amortised MAP Inference for Image Super-resolution
AL-CGAN?—?Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
ALI?—?Adversarially Learned Inference
AMGAN?—?Generative Adversarial Nets with Labeled Data by Activation Maximization
AnoGAN?—?Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN?—?ArtGAN: Artwork Synthesis with Conditional Categorial GANs
b-GAN?—?b-GAN: Unified Framework of Generative Adversarial Networks
Bayesian GAN?—?Deep and Hierarchical Implicit Models
BEGAN?—?BEGAN: Boundary Equilibrium Generative Adversarial Networks
BiGAN?—?Adversarial Feature Learning
BS-GAN?—?Boundary-Seeking Generative Adversarial Networks
CGAN?—?Conditional Generative Adversarial Nets
CCGAN?—?Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
CatGAN?—?Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CoGAN?—?Coupled Generative Adversarial Networks
Context-RNN-GAN?—?Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN?—?C-RNN-GAN: Continuous recurrent neural networks with adversarial training
CVAE-GAN?—?CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN?—?Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN?—?Unsupervised Cross-Domain Image Generation
DCGAN?—?Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN?—?Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN?—?Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN?—?DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
EBGAN?—?Energy-based Generative Adversarial Network
f-GAN?—?f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
GAWWN?—?Learning What and Where to Draw
GoGAN?—?Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
GP-GAN?—?GP-GAN: Towards Realistic High-Resolution Image Blending
IAN?—?Neural Photo Editing with Introspective Adversarial Networks
iGAN?—?Generative Visual Manipulation on the Natural Image Manifold
IcGAN?—?Invertible Conditional GANs for image editing
ID-CGAN-?Image De-raining Using a Conditional Generative Adversarial Network
Improved GAN?—?Improved Techniques for Training GANs
InfoGAN?—?InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
LAPGAN?—?Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
LR-GAN?—?LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation
LSGAN?—?Least Squares Generative Adversarial Networks
LS-GAN?—?Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities
MGAN?—?Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
MAGAN?—?MAGAN: Margin Adaptation for Generative Adversarial Networks
MAD-GAN?—?Multi-Agent Diverse Generative Adversarial Networks
MalGAN?—?Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
MARTA-GAN?—?Deep Unsupervised Representation Learning for Remote Sensing Images
McGAN?—?McGan: Mean and Covariance Feature Matching GAN
MedGAN?—?Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks
MIX+GAN?—?Generalization and Equilibrium in Generative Adversarial Nets (GANs)
MPM-GAN?—?Message Passing Multi-Agent GANs
MV-BiGAN?—?Multi-view Generative Adversarial Networks
pix2pix?—?Image-to-Image Translation with Conditional Adversarial Networks
PPGN?—?Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
PrGAN?—?3D Shape Induction from 2D Views of Multiple Objects
RenderGAN?—?RenderGAN: Generating Realistic Labeled Data
RTT-GAN?—?Recurrent Topic-Transition GAN for Visual Paragraph Generation
SGAN?—?Stacked Generative Adversarial Networks
SGAN?—?Texture Synthesis with Spatial Generative Adversarial Networks
SAD-GAN?—?SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks
SalGAN?—?SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
SEGAN?—?SEGAN: Speech Enhancement Generative Adversarial Network
SeGAN?—?SeGAN: Segmenting and Generating the Invisible
SeqGAN?—?SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
SketchGAN?—?Adversarial Training For Sketch Retrieval
SL-GAN?—?Semi-Latent GAN: Learning to generate and modify facial images from attributes
Softmax-GAN?—?Softmax GAN
SRGAN?—?Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
S2GAN?—?Generative Image Modeling using Style and Structure Adversarial Networks
SSL-GAN?—?Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
StackGAN?—?StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
TGAN?—?Temporal Generative Adversarial Nets
TAC-GAN?—?TAC-GAN?—?Text Conditioned Auxiliary Classifier Generative Adversarial Network
TP-GAN?—?Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis
Triple-GAN?—?Triple Generative Adversarial Nets
Unrolled GAN?—?Unrolled Generative Adversarial Networks
VGAN?—?Generating Videos with Scene Dynamics
VGAN?—?Generative Adversarial Networks as Variational Training of Energy Based Models
VAE-GAN?—?Autoencoding beyond pixels using a learned similarity metric
VariGAN?—?Multi-View Image Generation from a Single-View
ViGAN?—?Image Generation and Editing with Variational Info Generative AdversarialNetworks
WGAN?—?Wasserstein GAN
WGAN-GP?—?Improved Training of Wasserstein GANs
WaterGAN?—?WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images
如果你對 GAN 感興趣,可以訪問這個專題。歡迎交流。
作者:chen_h
微信號 & QQ:862251340
簡書地址:https://www.jianshu.com/p/b7f...
CoderPai 是一個專注于算法實戰的平臺,從基礎的算法到人工智能算法都有設計。如果你對算法實戰感興趣,請快快關注我們吧。加入AI實戰微信群,AI實戰QQ群,ACM算法微信群,ACM算法QQ群。長按或者掃描如下二維碼,關注 “CoderPai” 微信號(coderpai)
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/41154.html
摘要:特征匹配改變了生成器的損失函數,以最小化真實圖像的特征與生成的圖像之間的統計差異。我們建議讀者檢查上使用的損失函數和相應的性能,并通過實驗驗證來設置。相反,我們可能會將注意力轉向尋找在生成器性能不佳時不具有接近零梯度的損失函數。 前 ?言GAN模型相比較于其他網絡一直受困于三個問題的掣肘:?1. 不收斂;模型訓練不穩定,收斂的慢,甚至不收斂;?2. mode collapse; 生成器產生的...
摘要:元旦假期即將來臨,我們精心準備了這本阿里巴巴機器智能計算機視覺技術精選,收錄了頂級會議阿里論文,送給計劃在假期充電的同學們,也希望能和更多學術界工業界同仁一起探討交流。 當下計算機視覺技術無疑是AI浪潮中最火熱的議題之一。視覺技術的滲透,既可以對傳統商業進行改造使之看到新的商業機會,還可以創造全新的商業需求和市場。無論在電商、安防、娛樂,還是在工業、醫療、自動駕駛領域,計算機視覺技術都...
摘要:判別器勝利的條件則是很好地將真實圖像自編碼,以及很差地辨識生成的圖像。 先看一張圖:下圖左右兩端的兩欄是真實的圖像,其余的是計算機生成的。過渡自然,效果驚人。這是谷歌本周在 arXiv 發表的論文《BEGAN:邊界均衡生成對抗網絡》得到的結果。這項工作針對 GAN 訓練難、控制生成樣本多樣性難、平衡鑒別器和生成器收斂難等問題,提出了改善。尤其值得注意的,是作者使用了很簡單的結構,經過常規訓練...
摘要:另外,在損失函數中加入感知正則化則在一定程度上可緩解該問題。替代損失函數修復缺陷的最流行的補丁是。的作者認為傳統損失函數并不會使收集的數據分布接近于真實數據分布。原來損失函數中的對數損失并不影響生成數據與決策邊界的距離。 盡管 GAN 領域的進步令人印象深刻,但其在應用過程中仍然存在一些困難。本文梳理了 GAN 在應用過程中存在的一些難題,并提出了的解決方法。使用 GAN 的缺陷眾所周知,G...
摘要:二是精度查全率和得分,用來衡量判別式模型的質量。精度查全率和團隊還用他們的三角形數據集,測試了樣本量為時,大范圍搜索超參數來進行計算的精度和查全率。 從2014年誕生至今,生成對抗網絡(GAN)熱度只增不減,各種各樣的變體層出不窮。有位名叫Avinash Hindupur的國際友人建立了一個GAN Zoo,他的動物園里目前已經收集了多達214種有名有姓的GAN。DeepMind研究員們甚至將...
閱讀 1881·2021-11-25 09:43
閱讀 3174·2021-11-15 11:38
閱讀 2715·2019-08-30 13:04
閱讀 491·2019-08-29 11:07
閱讀 1502·2019-08-26 18:37
閱讀 2738·2019-08-26 14:07
閱讀 591·2019-08-26 13:52
閱讀 2285·2019-08-26 12:09