摘要:選擇多行通過一個會通過索引對行進行切片,由于前面設(shè)置了索引為日期格式,所以可以方便的直接使用日期范圍進行篩選。選擇指定行列的數(shù)據(jù)同,代表全部。按季度劃分,每個月開始為頻率一中下一個月的早上點。
背景
在數(shù)據(jù)分析中pandas舉足輕重,學(xué)習(xí)pandas最好的方法就是看官方文檔,以下是根據(jù)官方文檔10 Minutes to pandas學(xué)習(xí)記錄。(官方標(biāo)題10分鐘,感覺起碼得半個小時吧)
在pandas中主要有兩種數(shù)據(jù)類型,可以簡單的理解為:
Series:一維數(shù)組
DateFrame:二維數(shù)組(矩陣)
有了大概的概念之后,開始正式認(rèn)識pandas:
首先要引入對應(yīng)的包:
import numpy as np import pandas as pd新建對象 Object Creation
Series
可以通過傳入一個list對象來新建Series,其中空值為np.nan:
s = pd.Series([1,3,4,np.nan,7,9]) s Out[5]: 0 1.0 1 3.0 2 4.0 3 NaN 4 7.0 5 9.0 dtype: float64
pandas會默認(rèn)創(chuàng)建一列索引index(上面的0-5)。我們也可以在創(chuàng)建時就指定索引:
pd.Series([1,3,4,np.nan,7,9], index=[1,1,2,2,"a",4]) Out[9]: 1 1.0 1 3.0 2 4.0 2 NaN a 7.0 4 9.0 dtype: float64
要注意的是,索引是可以重復(fù)的,也可以是字符。
DataFrame
新建一個DataFrame對象可以有多種方式:
通過傳入一個numpy的數(shù)組、指定一個時間的索引以及一個列名。
dates = pd.date_range("20190101", periods=6) dates Out[11]: DatetimeIndex(["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04", "2019-01-05", "2019-01-06"], dtype="datetime64[ns]", freq="D") df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list("ABCD")) df Out[18]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 2019-01-06 0.221597 -0.753038 -1.741256 0.287280
通過傳入一個dict對象
df2 = pd.DataFrame({"A":1., "B":pd.Timestamp("20190101"), "C":pd.Series(1, index=list(range(4)), dtype="float32"), "D":np.array([3]*4, dtype="int32"), "E":pd.Categorical(["test", "tain", "test", "train"]), "F":"foo"}) df2 Out[27]: A B C D E F 0 1.0 2019-01-01 1.0 3 test foo 1 1.0 2019-01-01 1.0 3 tain foo 2 1.0 2019-01-01 1.0 3 test foo 3 1.0 2019-01-01 1.0 3 train foo
這里我們指定了不同的類型,可以通過如下查看:
df2.dtypes Out[28]: A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object
可以看出DataFrame和Series一樣,在沒有指定索引時,會自動生成一個數(shù)字的索引,這在后續(xù)的操作中十分重要。
查看 Viewing Data
查看開頭幾行或者末尾幾行:
df.head() Out[30]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 df.tail(3) Out[31]: A B C D 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 2019-01-06 0.221597 -0.753038 -1.741256 0.287280
可以通過添加行數(shù)參數(shù)來輸出,默認(rèn)為輸出5行。
查看索引和列名
df.index Out[32]: DatetimeIndex(["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04", "2019-01-05", "2019-01-06"], dtype="datetime64[ns]", freq="D") df.columns Out[33]: Index(["A", "B", "C", "D"], dtype="object")
使用DataFrame.to_numpy()轉(zhuǎn)化為numpy數(shù)據(jù)。需要注意的是由于numpy array類型數(shù)據(jù)只可包含一種格式,而DataFrame類型數(shù)據(jù)可包含多種格式,所以在轉(zhuǎn)換過程中,pandas會找到一種可以處理DateFrame中國所有格式的numpy array格式,比如object。這個過程會耗費一定的計算量。
df.to_numpy() Out[35]: array([[ 0.67162219, 0.78572584, 0.39243527, 0.87469243], [-2.42070338, -1.11620768, -0.34607048, 0.78594081], [ 1.36442543, -0.94764138, 2.38688005, 0.58537186], [-0.48597971, -1.28145415, 0.35406263, -1.41885798], [-1.12271697, -2.78904135, -0.79181242, -0.17434484], [ 0.22159737, -0.75303807, -1.74125564, 0.28728004]]) df2.to_numpy() Out[36]: array([[1.0, Timestamp("2019-01-01 00:00:00"), 1.0, 3, "test", "foo"], [1.0, Timestamp("2019-01-01 00:00:00"), 1.0, 3, "tain", "foo"], [1.0, Timestamp("2019-01-01 00:00:00"), 1.0, 3, "test", "foo"], [1.0, Timestamp("2019-01-01 00:00:00"), 1.0, 3, "train", "foo"]], dtype=object)
上面df全部為float類型,所以轉(zhuǎn)換會很快,而df2涉及多種類型轉(zhuǎn)換,最后全部變成了object類型元素。
查看數(shù)據(jù)的簡要統(tǒng)計結(jié)果
df.describe() Out[37]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean -0.295293 -1.016943 0.042373 0.156680 std 1.356107 1.144047 1.396030 0.860725 min -2.420703 -2.789041 -1.741256 -1.418858 25% -0.963533 -1.240143 -0.680377 -0.058939 50% -0.132191 -1.031925 0.003996 0.436326 75% 0.559116 -0.801689 0.382842 0.735799 max 1.364425 0.785726 2.386880 0.874692
轉(zhuǎn)置
df.T Out[38]: 2019-01-01 2019-01-02 2019-01-03 2019-01-04 2019-01-05 2019-01-06 A 0.671622 -2.420703 1.364425 -0.485980 -1.122717 0.221597 B 0.785726 -1.116208 -0.947641 -1.281454 -2.789041 -0.753038 C 0.392435 -0.346070 2.386880 0.354063 -0.791812 -1.741256 D 0.874692 0.785941 0.585372 -1.418858 -0.174345 0.287280
按坐標(biāo)軸排序,其中axis參數(shù)為坐標(biāo)軸,axis默認(rèn)為0,即橫軸(對行排序),axis=1則為縱軸(對列排序);asceding參數(shù)默認(rèn)為True,即升序排序,ascending=False則為降序排序:
df.sort_index(axis=1) Out[44]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 df.sort_index(axis=1, ascending=False) Out[45]: D C B A 2019-01-01 0.874692 0.392435 0.785726 0.671622 2019-01-02 0.785941 -0.346070 -1.116208 -2.420703 2019-01-03 0.585372 2.386880 -0.947641 1.364425 2019-01-04 -1.418858 0.354063 -1.281454 -0.485980 2019-01-05 -0.174345 -0.791812 -2.789041 -1.122717 2019-01-06 0.287280 -1.741256 -0.753038 0.221597
可見df.sort_index(axis=1)是按列名升序排序,所以看起來沒有變化,當(dāng)設(shè)置ascending=False時,列順序變成了DCBA。
按數(shù)值排序:
df.sort_values(by="B") Out[46]: A B C D 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 2019-01-01 0.671622 0.785726 0.392435 0.874692 df.sort_values(by="B", ascending=False) Out[47]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345篩選 Selection
獲取某列
df["A"] Out[49]: 2019-01-01 0.671622 2019-01-02 -2.420703 2019-01-03 1.364425 2019-01-04 -0.485980 2019-01-05 -1.122717 2019-01-06 0.221597 Freq: D, Name: A, dtype: float64 type(df.A) Out[52]: pandas.core.series.Series
也可直接用df.A,注意這里是大小寫敏感的,這時候獲取的是一個Series類型數(shù)據(jù)。
選擇多行
df[0:3] Out[53]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 df["20190102":"20190104"] Out[54]: A B C D 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858
通過一個[]會通過索引對行進行切片,由于前面設(shè)置了索引為日期格式,所以可以方便的直接使用日期范圍進行篩選。
通過標(biāo)簽選擇
選擇某行
df.loc[dates[0]] Out[57]: A 0.671622 B 0.785726 C 0.392435 D 0.874692 Name: 2019-01-01 00:00:00, dtype: float64
選擇指定行列的數(shù)據(jù)
df.loc[:, ("A", "C")] Out[58]: A C 2019-01-01 0.671622 0.392435 2019-01-02 -2.420703 -0.346070 2019-01-03 1.364425 2.386880 2019-01-04 -0.485980 0.354063 2019-01-05 -1.122717 -0.791812 2019-01-06 0.221597 -1.741256 df.loc["20190102":"20190105", ("A", "C")] Out[62]: A C 2019-01-02 -2.420703 -0.346070 2019-01-03 1.364425 2.386880 2019-01-04 -0.485980 0.354063 2019-01-05 -1.122717 -0.791812
傳入第一個參數(shù)是行索引標(biāo)簽范圍,第二個是列索引標(biāo)簽,:代表全部。
選定某值
df.loc["20190102", "A"] Out[69]: -2.420703380445092 df.at[dates[1], "A"] Out[70]: -2.420703380445092
可以通過loc[]和at[]兩種方式來獲取某值,但需要注意的是,由于行索引為datetime類型,使用loc[]方式獲取時,可直接使用20190102字符串來代替,而在at[]中,必須傳入datetime類型,否則會有報錯:
df.at["20190102", "A"] File "pandas/_libs/index.pyx", line 81, in pandas._libs.index.IndexEngine.get_value File "pandas/_libs/index.pyx", line 89, in pandas._libs.index.IndexEngine.get_value File "pandas/_libs/index.pyx", line 449, in pandas._libs.index.DatetimeEngine.get_loc File "pandas/_libs/index.pyx", line 455, in pandas._libs.index.DatetimeEngine._date_check_type KeyError: "20190102"
通過位置選擇
選擇某行
df.iloc[3] Out[71]: A -0.485980 B -1.281454 C 0.354063 D -1.418858 Name: 2019-01-04 00:00:00, dtype: float64
iloc[]方法的參數(shù),必須是數(shù)值。
選擇指定行列的數(shù)據(jù)
df.iloc[3:5, 0:2] Out[72]: A B 2019-01-04 -0.485980 -1.281454 2019-01-05 -1.122717 -2.789041 df.iloc[:,:] Out[73]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 df.iloc[[1, 2, 4], [0, 2]] Out[74]: A C 2019-01-02 -2.420703 -0.346070 2019-01-03 1.364425 2.386880 2019-01-05 -1.122717 -0.791812
同loc[],:代表全部。
選擇某值
df.iloc[1, 1] Out[75]: -1.1162076820700824 df.iat[1, 1] Out[76]: -1.1162076820700824
可以通過iloc[]和iat[]兩種方法獲取數(shù)值。
按條件判斷選擇
按某列的數(shù)值判斷選擇
df[df.A > 0] Out[77]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-06 0.221597 -0.753038 -1.741256 0.287280
篩選出符合要求的數(shù)據(jù)
df[df > 0] Out[78]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 NaN NaN NaN 0.785941 2019-01-03 1.364425 NaN 2.386880 0.585372 2019-01-04 NaN NaN 0.354063 NaN 2019-01-05 NaN NaN NaN NaN 2019-01-06 0.221597 NaN NaN 0.287280
不符合要求的數(shù)據(jù)均會被賦值為空NaN。
使用isin()方法篩選
df2 = df.copy() df2["E"] = ["one", "one", "two", "three", "four", "three"] df2 Out[88]: A B C D E 2019-01-01 0.671622 0.785726 0.392435 0.874692 one 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 one 2019-01-03 1.364425 -0.947641 2.386880 0.585372 two 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 three 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 four 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 three df2["E"].isin(["two", "four"]) Out[89]: 2019-01-01 False 2019-01-02 False 2019-01-03 True 2019-01-04 False 2019-01-05 True 2019-01-06 False Freq: D, Name: E, dtype: bool df2[df2["E"].isin(["two", "four"])] Out[90]: A B C D E 2019-01-03 1.364425 -0.947641 2.386880 0.585372 two 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 four
注意:isin必須嚴(yán)格一致才行,df中的默認(rèn)數(shù)值小數(shù)點位數(shù)很長,并非顯示的5位,為了方便展示,所以新增了E列。直接用原數(shù)值,情況如下,可看出[1,1]位置符合要求。
df.isin([-1.1162076820700824]) Out[95]: A B C D 2019-01-01 False False False False 2019-01-02 False True False False 2019-01-03 False False False False 2019-01-04 False False False False 2019-01-05 False False False False 2019-01-06 False False False False
設(shè)定值
通過指定索引設(shè)定列
s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range("20190102", periods=6)) s1 Out[98]: 2019-01-02 1 2019-01-03 2 2019-01-04 3 2019-01-05 4 2019-01-06 5 2019-01-07 6 Freq: D, dtype: int64 df["F"]=s1 df Out[101]: A B C D F 2019-01-01 0.671622 0.785726 0.392435 0.874692 NaN 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 1.0 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2.0 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 3.0 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 4.0 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 5.0
空值會自動填充為NaN。
通過標(biāo)簽設(shè)定值
df.at[dates[0], "A"] = 0 df Out[103]: A B C D F 2019-01-01 0.000000 0.785726 0.392435 0.874692 NaN 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 1.0 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2.0 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 3.0 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 4.0 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 5.0
通過為止設(shè)定值
df.iat[0, 1] = 0 df Out[105]: A B C D F 2019-01-01 0.000000 0.000000 0.392435 0.874692 NaN 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 1.0 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2.0 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 3.0 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 4.0 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 5.0
通過NumPy array設(shè)定值
df.loc[:, "D"] = np.array([5] * len(df)) df Out[109]: A B C D F 2019-01-01 0.000000 0.000000 0.392435 5 NaN 2019-01-02 -2.420703 -1.116208 -0.346070 5 1.0 2019-01-03 1.364425 -0.947641 2.386880 5 2.0 2019-01-04 -0.485980 -1.281454 0.354063 5 3.0 2019-01-05 -1.122717 -2.789041 -0.791812 5 4.0 2019-01-06 0.221597 -0.753038 -1.741256 5 5.0
通過條件判斷設(shè)定值
df2 = df.copy() df2[df2 > 0] = -df2 df2 Out[112]: A B C D F 2019-01-01 0.000000 0.000000 -0.392435 -5 NaN 2019-01-02 -2.420703 -1.116208 -0.346070 -5 -1.0 2019-01-03 -1.364425 -0.947641 -2.386880 -5 -2.0 2019-01-04 -0.485980 -1.281454 -0.354063 -5 -3.0 2019-01-05 -1.122717 -2.789041 -0.791812 -5 -4.0 2019-01-06 -0.221597 -0.753038 -1.741256 -5 -5.0空值處理 Missing Data
pandas默認(rèn)使用np.nan來表示空值,在統(tǒng)計計算中會直接忽略。
通過reindex()方法可以新增、修改、刪除某坐標(biāo)軸(行或列)的索引,并返回一個數(shù)據(jù)的拷貝:
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"]) df1.loc[dates[0]:dates[1], "E"] = 1 df1 Out[115]: A B C D F E 2019-01-01 0.000000 0.000000 0.392435 5 NaN 1.0 2019-01-02 -2.420703 -1.116208 -0.346070 5 1.0 1.0 2019-01-03 1.364425 -0.947641 2.386880 5 2.0 NaN 2019-01-04 -0.485980 -1.281454 0.354063 5 3.0 NaN
刪除空值
df1.dropna(how="any") Out[116]: A B C D F E 2019-01-02 -2.420703 -1.116208 -0.34607 5 1.0 1.0
填充空值
df1.fillna(value=5) Out[117]: A B C D F E 2019-01-01 0.000000 0.000000 0.392435 5 5.0 1.0 2019-01-02 -2.420703 -1.116208 -0.346070 5 1.0 1.0 2019-01-03 1.364425 -0.947641 2.386880 5 2.0 5.0 2019-01-04 -0.485980 -1.281454 0.354063 5 3.0 5.0
判斷是否為空值
pd.isna(df1) Out[118]: A B C D F E 2019-01-01 False False False False True False 2019-01-02 False False False False False False 2019-01-03 False False False False False True 2019-01-04 False False False False False True運算 Operations
統(tǒng)計
注意 所有的統(tǒng)計默認(rèn)是不包含空值的
平均值
默認(rèn)情況是按列求平均值:
df.mean() Out[119]: A -0.407230 B -1.147897 C 0.042373 D 5.000000 F 3.000000 dtype: float64
如果需要按行求平均值,需指定軸參數(shù):
df.mean(1) Out[120]: 2019-01-01 1.348109 2019-01-02 0.423404 2019-01-03 1.960733 2019-01-04 1.317326 2019-01-05 0.859286 2019-01-06 1.545461 Freq: D, dtype: float64
數(shù)值移動
s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates) s Out[122]: 2019-01-01 1.0 2019-01-02 3.0 2019-01-03 5.0 2019-01-04 NaN 2019-01-05 6.0 2019-01-06 8.0 Freq: D, dtype: float64 s = s.shift(2) s Out[125]: 2019-01-01 NaN 2019-01-02 NaN 2019-01-03 1.0 2019-01-04 3.0 2019-01-05 5.0 2019-01-06 NaN Freq: D, dtype: float64
這里將s的值移動兩個,那么空出的部分會自動使用NaN填充。
不同維度間的運算,pandas會自動擴展維度:
df.sub(s, axis="index") Out[128]: A B C D F 2019-01-01 NaN NaN NaN NaN NaN 2019-01-02 NaN NaN NaN NaN NaN 2019-01-03 0.364425 -1.947641 1.386880 4.0 1.0 2019-01-04 -3.485980 -4.281454 -2.645937 2.0 0.0 2019-01-05 -6.122717 -7.789041 -5.791812 0.0 -1.0 2019-01-06 NaN NaN NaN NaN NaN
應(yīng)用
通過apply()方法,可以對數(shù)據(jù)進行逐一操作:
累計求和
df.apply(np.cumsum) Out[130]: A B C D F 2019-01-01 0.000000 0.000000 0.392435 5 NaN 2019-01-02 -2.420703 -1.116208 0.046365 10 1.0 2019-01-03 -1.056278 -2.063849 2.433245 15 3.0 2019-01-04 -1.542258 -3.345303 2.787307 20 6.0 2019-01-05 -2.664975 -6.134345 1.995495 25 10.0 2019-01-06 -2.443377 -6.887383 0.254239 30 15.0
這里使用了apply()方法調(diào)用np.cumsum方法,也可直接使用df.cumsum():
df.cumsum() Out[133]: A B C D F 2019-01-01 0.000000 0.000000 0.392435 5.0 NaN 2019-01-02 -2.420703 -1.116208 0.046365 10.0 1.0 2019-01-03 -1.056278 -2.063849 2.433245 15.0 3.0 2019-01-04 -1.542258 -3.345303 2.787307 20.0 6.0 2019-01-05 -2.664975 -6.134345 1.995495 25.0 10.0 2019-01-06 -2.443377 -6.887383 0.254239 30.0 15.0
自定義方法
通過自定義函數(shù),配合apply()方法,可以實現(xiàn)更多數(shù)據(jù)處理:
df.apply(lambda x: x.max() - x.min()) Out[134]: A 3.785129 B 2.789041 C 4.128136 D 0.000000 F 4.000000 dtype: float64
矩陣
統(tǒng)計矩陣中每個元素出現(xiàn)的頻次:
s = pd.Series(np.random.randint(0, 7, size=10)) s Out[136]: 0 2 1 0 2 4 3 0 4 3 5 3 6 6 7 4 8 6 9 5 dtype: int64 s.value_counts() Out[137]: 6 2 4 2 3 2 0 2 5 1 2 1 dtype: int64
String方法
所有的Series類型都可以直接調(diào)用str的屬性方法來對每個對象進行操作。
比如轉(zhuǎn)換成大寫:
s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"]) s.str.upper() Out[139]: 0 A 1 B 2 C 3 AABA 4 BACA 5 NaN 6 CABA 7 DOG 8 CAT dtype: object
分列:
s = pd.Series(["A,b", "c,d"]) s Out[142]: 0 A,b 1 c,d dtype: object s.str.split(",", expand=True) Out[143]: 0 1 0 A b 1 c d
其他方法:
dir(str) Out[140]: ["capitalize", "casefold", "center", "count", "encode", "endswith", "expandtabs", "find", "format", "format_map", "index", "isalnum", "isalpha", "isascii", "isdecimal", "isdigit", "isidentifier", "islower", "isnumeric", "isprintable", "isspace", "istitle", "isupper", "join", "ljust", "lower", "lstrip", "maketrans", "partition", "replace", "rfind", "rindex", "rjust", "rpartition", "rsplit", "rstrip", "split", "splitlines", "startswith", "strip", "swapcase", "title", "translate", "upper", "zfill"]合并 Merge
pandas`可以提供很多方法可以快速的合并各種類型的Series、DataFrame以及Panel Object。
Concat方法
df = pd.DataFrame(np.random.randn(10, 4)) df Out[145]: 0 1 2 3 0 -0.227408 -0.185674 -0.187919 0.185685 1 1.132517 -0.539992 1.156631 -0.022468 2 0.214134 -1.283055 -0.862972 0.518942 3 0.785903 1.033915 -0.471496 -1.403762 4 -0.676717 -0.529971 -1.161988 -1.265071 5 0.670126 1.320960 -0.128098 0.718631 6 0.589902 0.349386 0.221955 1.749188 7 -0.328885 0.607929 -0.973610 -0.928472 8 1.724243 -0.661503 -0.374254 0.409250 9 1.346625 0.618285 0.528776 -0.628470 # break it into pieces pieces = [df[:3], df[3:7], df[7:]] pieces Out[147]: [ 0 1 2 3 0 -0.227408 -0.185674 -0.187919 0.185685 1 1.132517 -0.539992 1.156631 -0.022468 2 0.214134 -1.283055 -0.862972 0.518942, 0 1 2 3 3 0.785903 1.033915 -0.471496 -1.403762 4 -0.676717 -0.529971 -1.161988 -1.265071 5 0.670126 1.320960 -0.128098 0.718631 6 0.589902 0.349386 0.221955 1.749188, 0 1 2 3 7 -0.328885 0.607929 -0.973610 -0.928472 8 1.724243 -0.661503 -0.374254 0.409250 9 1.346625 0.618285 0.528776 -0.628470] pd.concat(pieces) Out[148]: 0 1 2 3 0 -0.227408 -0.185674 -0.187919 0.185685 1 1.132517 -0.539992 1.156631 -0.022468 2 0.214134 -1.283055 -0.862972 0.518942 3 0.785903 1.033915 -0.471496 -1.403762 4 -0.676717 -0.529971 -1.161988 -1.265071 5 0.670126 1.320960 -0.128098 0.718631 6 0.589902 0.349386 0.221955 1.749188 7 -0.328885 0.607929 -0.973610 -0.928472 8 1.724243 -0.661503 -0.374254 0.409250 9 1.346625 0.618285 0.528776 -0.628470
Merge方法
這是類似sql的合并方法:
left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]}) right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]}) left Out[151]: key lval 0 foo 1 1 foo 2 right Out[152]: key rval 0 foo 4 1 foo 5 pd.merge(left, right, on="key") Out[153]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5
另一個例子:
left = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]}) right = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]}) left Out[156]: key lval 0 foo 1 1 bar 2 right Out[157]: key rval 0 foo 4 1 bar 5 pd.merge(left, right, on="key") Out[158]: key lval rval 0 foo 1 4 1 bar 2 5
Append方法
在DataFrame中增加行
df = pd.DataFrame(np.random.randn(8, 4), columns=["A", "B", "C", "D"]) df Out[160]: A B C D 0 -0.496709 0.573449 0.076059 0.685285 1 0.479253 0.587376 -1.240070 -0.907910 2 -0.052609 -0.287786 -1.949402 1.163323 3 -0.659489 0.525583 0.820922 -1.368544 4 1.270453 -1.813249 0.059915 0.586703 5 1.859657 0.564274 -0.198763 -1.794173 6 -0.649153 -3.129258 0.063418 -0.727936 7 0.862402 -0.800031 -1.954784 -0.028607 s = df.iloc[3] s Out[162]: A -0.659489 B 0.525583 C 0.820922 D -1.368544 Name: 3, dtype: float64 df.append(s, ignore_index=True) Out[163]: A B C D 0 -0.496709 0.573449 0.076059 0.685285 1 0.479253 0.587376 -1.240070 -0.907910 2 -0.052609 -0.287786 -1.949402 1.163323 3 -0.659489 0.525583 0.820922 -1.368544 4 1.270453 -1.813249 0.059915 0.586703 5 1.859657 0.564274 -0.198763 -1.794173 6 -0.649153 -3.129258 0.063418 -0.727936 7 0.862402 -0.800031 -1.954784 -0.028607 8 -0.659489 0.525583 0.820922 -1.368544
這里要注意,我們增加了ignore_index=True參數(shù),如果不設(shè)置的話,那么增加的新行的index仍然是3,這樣在后續(xù)的處理中可能有存在問題。具體也需要看情況來處理。
df.append(s) Out[164]: A B C D 0 -0.496709 0.573449 0.076059 0.685285 1 0.479253 0.587376 -1.240070 -0.907910 2 -0.052609 -0.287786 -1.949402 1.163323 3 -0.659489 0.525583 0.820922 -1.368544 4 1.270453 -1.813249 0.059915 0.586703 5 1.859657 0.564274 -0.198763 -1.794173 6 -0.649153 -3.129258 0.063418 -0.727936 7 0.862402 -0.800031 -1.954784 -0.028607 3 -0.659489 0.525583 0.820922 -1.368544分組 Grouping
一般分組統(tǒng)計有三個步驟:
分組:選擇需要的數(shù)據(jù)
計算:對每個分組進行計算
合并:把分組計算的結(jié)果合并為一個數(shù)據(jù)結(jié)構(gòu)中
df = pd.DataFrame({"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "three", "two", "two", "one", "three"], "C": np.random.randn(8), "D": np.random.randn(8)}) df Out[166]: A B C D 0 foo one -1.252153 0.172863 1 bar one 0.238547 -0.648980 2 foo two 0.756975 0.195766 3 bar three -0.933405 -0.320043 4 foo two -0.310650 -1.388255 5 bar two 1.568550 -1.911817 6 foo one -0.340290 -2.141259
按A列分組并使用sum函數(shù)進行計算:
df.groupby("A").sum() Out[167]: C D A bar 0.873692 -2.880840 foo -1.817027 -5.833961
這里由于B列無法應(yīng)用sum函數(shù),所以直接被忽略了。
按A、B列分組并使用sum函數(shù)進行計算:
df.groupby(["A", "B"]).sum() Out[168]: C D A B bar one 0.238547 -0.648980 three -0.933405 -0.320043 two 1.568550 -1.911817 foo one -1.592443 -1.968396 three -0.670909 -2.673075 two 0.446325 -1.192490
這樣就有了一個多層index的結(jié)果集。
整形 Reshaping
堆疊 Stack
python的zip函數(shù)可以將對象中對應(yīng)的元素打包成一個個的元組:
tuples = list(zip(["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"])) tuples Out[172]: [("bar", "one"), ("bar", "two"), ("baz", "one"), ("baz", "two"), ("foo", "one"), ("foo", "two"), ("qux", "one"), ("qux", "two")] ## 設(shè)置兩級索引 index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) index Out[174]: MultiIndex(levels=[["bar", "baz", "foo", "qux"], ["one", "two"]], codes=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]], names=["first", "second"]) ## 創(chuàng)建DataFrame df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"]) df Out[176]: A B first second bar one -0.501215 -0.947993 two -0.828914 0.232167 baz one 1.245419 1.006092 two 1.016656 -0.441073 foo one 0.479037 -0.500034 two -1.113097 0.591696 qux one -0.014760 -0.320735 two -0.648743 1.499899 ## 選取DataFrame df2 = df[:4] df2 Out[179]: A B first second bar one -0.501215 -0.947993 two -0.828914 0.232167 baz one 1.245419 1.006092 two 1.016656 -0.441073
使用stack()方法,可以通過堆疊的方式將二維數(shù)據(jù)變成為一維數(shù)據(jù):
stacked = df2.stack() stacked Out[181]: first second bar one A -0.501215 B -0.947993 two A -0.828914 B 0.232167 baz one A 1.245419 B 1.006092 two A 1.016656 B -0.441073 dtype: float64
對應(yīng)的逆操作為unstacked()方法:
stacked.unstack() Out[182]: A B first second bar one -0.501215 -0.947993 two -0.828914 0.232167 baz one 1.245419 1.006092 two 1.016656 -0.441073 stacked.unstack(1) Out[183]: second one two first bar A -0.501215 -0.828914 B -0.947993 0.232167 baz A 1.245419 1.016656 B 1.006092 -0.441073 stacked.unstack(0) Out[184]: first bar baz second one A -0.501215 1.245419 B -0.947993 1.006092 two A -0.828914 1.016656 B 0.232167 -0.441073
unstack()默認(rèn)對最后一層級進行操作,也可通過輸入?yún)?shù)指定。
表格轉(zhuǎn)置
df = pd.DataFrame({"A": ["one", "one", "two", "three"] * 3, "B": ["A", "B", "C"] * 4, "C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 2, "D": np.random.randn(12), "E": np.random.randn(12)}) df Out[190]: A B C D E 0 one A foo -0.933264 -2.387490 1 one B foo -0.288101 0.023214 2 two C foo 0.594490 0.418505 3 three A bar 0.450683 1.939623 4 one B bar 0.243897 -0.965783 5 one C bar -0.705494 -0.078283 6 two A foo 1.560352 0.419907 7 three B foo 0.199453 0.998711 8 one C foo 1.426861 -1.108297 9 one A bar -0.570951 -0.022560 10 two B bar -0.350937 -1.767804 11 three C bar 0.983465 0.065792
通過pivot_table()方法可以很方便的進行行列的轉(zhuǎn)換:
pd.pivot_table(df, values="D", index=["A", "B"], columns=["C"]) Out[191]: C bar foo A B one A -0.570951 -0.933264 B 0.243897 -0.288101 C -0.705494 1.426861 three A 0.450683 NaN B NaN 0.199453 C 0.983465 NaN two A NaN 1.560352 B -0.350937 NaN C NaN 0.594490
轉(zhuǎn)換中,涉及到空值部分會自動填充為NaN。
時間序列 Time Seriespandas的在時序轉(zhuǎn)換方面十分強大,可以很方便的進行各種轉(zhuǎn)換。
時間間隔調(diào)整
rng = pd.date_range("1/1/2019", periods=100, freq="S") rng[:5] Out[214]: DatetimeIndex(["2019-01-01 00:00:00", "2019-01-01 00:00:01", "2019-01-01 00:00:02", "2019-01-01 00:00:03", "2019-01-01 00:00:04"], dtype="datetime64[ns]", freq="S") ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) ts.head(5) Out[216]: 2019-01-01 00:00:00 245 2019-01-01 00:00:01 347 2019-01-01 00:00:02 113 2019-01-01 00:00:03 196 2019-01-01 00:00:04 131 Freq: S, dtype: int64 ## 按10s間隔進行重新采樣 ts1 = ts.resample("10S") ts1 Out[209]: DatetimeIndexResampler [freq=<10 * Seconds>, axis=0, closed=left, label=left, convention=start, base=0] ## 用求平均的方式進行數(shù)據(jù)整合 ts1.mean() Out[218]: 2019-01-01 00:00:00 174.0 2019-01-01 00:00:10 278.5 2019-01-01 00:00:20 281.8 2019-01-01 00:00:30 337.2 2019-01-01 00:00:40 221.0 2019-01-01 00:00:50 277.1 2019-01-01 00:01:00 171.0 2019-01-01 00:01:10 321.0 2019-01-01 00:01:20 318.6 2019-01-01 00:01:30 302.6 Freq: 10S, dtype: float64 ## 用求和的方式進行數(shù)據(jù)整合 ts1.sum() Out[219]: 2019-01-01 00:00:00 1740 2019-01-01 00:00:10 2785 2019-01-01 00:00:20 2818 2019-01-01 00:00:30 3372 2019-01-01 00:00:40 2210 2019-01-01 00:00:50 2771 2019-01-01 00:01:00 1710 2019-01-01 00:01:10 3210 2019-01-01 00:01:20 3186 2019-01-01 00:01:30 3026 Freq: 10S, dtype: int64
這里先通過resample進行重采樣,在指定sum()或者mean()等方式來指定沖采樣的處理方式。
顯示時區(qū):
rng = pd.date_range("1/1/2019 00:00", periods=5, freq="D") rng Out[221]: DatetimeIndex(["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04", "2019-01-05"], dtype="datetime64[ns]", freq="D") ts = pd.Series(np.random.randn(len(rng)), rng) ts Out[223]: 2019-01-01 -2.327686 2019-01-02 1.527872 2019-01-03 0.063982 2019-01-04 -0.213572 2019-01-05 -0.014856 Freq: D, dtype: float64 ts_utc = ts.tz_localize("UTC") ts_utc Out[225]: 2019-01-01 00:00:00+00:00 -2.327686 2019-01-02 00:00:00+00:00 1.527872 2019-01-03 00:00:00+00:00 0.063982 2019-01-04 00:00:00+00:00 -0.213572 2019-01-05 00:00:00+00:00 -0.014856 Freq: D, dtype: float64
轉(zhuǎn)換時區(qū):
ts_utc.tz_convert("US/Eastern") Out[226]: 2018-12-31 19:00:00-05:00 -2.327686 2019-01-01 19:00:00-05:00 1.527872 2019-01-02 19:00:00-05:00 0.063982 2019-01-03 19:00:00-05:00 -0.213572 2019-01-04 19:00:00-05:00 -0.014856 Freq: D, dtype: float64
時間格式轉(zhuǎn)換
rng = pd.date_range("1/1/2019", periods=5, freq="M") ts = pd.Series(np.random.randn(len(rng)), index=rng) ts Out[230]: 2019-01-31 0.197134 2019-02-28 0.569082 2019-03-31 -0.322141 2019-04-30 0.005778 2019-05-31 -0.082306 Freq: M, dtype: float64 ps = ts.to_period() ps Out[232]: 2019-01 0.197134 2019-02 0.569082 2019-03 -0.322141 2019-04 0.005778 2019-05 -0.082306 Freq: M, dtype: float64 ps.to_timestamp() Out[233]: 2019-01-01 0.197134 2019-02-01 0.569082 2019-03-01 -0.322141 2019-04-01 0.005778 2019-05-01 -0.082306 Freq: MS, dtype: float64
在是時間段和時間轉(zhuǎn)換過程中,有一些很方便的算術(shù)方法可以使用,比如我們轉(zhuǎn)換如下兩個頻率:
1、按季度劃分,且每個年的最后一個月是11月。
2、按季度劃分,每個月開始為頻率一中下一個月的早上9點。
prng = pd.period_range("2018Q1", "2019Q4", freq="Q-NOV") prng Out[243]: PeriodIndex(["2018Q1", "2018Q2", "2018Q3", "2018Q4", "2019Q1", "2019Q2", "2019Q3", "2019Q4"], dtype="period[Q-NOV]", freq="Q-NOV") ts = pd.Series(np.random.randn(len(prng)), prng) ts Out[245]: 2018Q1 -0.112692 2018Q2 -0.507304 2018Q3 -0.324846 2018Q4 0.549671 2019Q1 -0.897732 2019Q2 1.130070 2019Q3 -0.399814 2019Q4 0.830488 Freq: Q-NOV, dtype: float64 ts.index = (prng.asfreq("M", "e") + 1).asfreq("H", "s") + 9 ts Out[247]: 2018-03-01 09:00 -0.112692 2018-06-01 09:00 -0.507304 2018-09-01 09:00 -0.324846 2018-12-01 09:00 0.549671 2019-03-01 09:00 -0.897732 2019-06-01 09:00 1.130070 2019-09-01 09:00 -0.399814 2019-12-01 09:00 0.830488 Freq: H, dtype: float64
注意:這個例子有點怪。可以這樣理解,我們先將prng直接轉(zhuǎn)換為按小時顯示:
prng.asfreq("H", "end") Out[253]: PeriodIndex(["2018-02-28 23:00", "2018-05-31 23:00", "2018-08-31 23:00", "2018-11-30 23:00", "2019-02-28 23:00", "2019-05-31 23:00", "2019-08-31 23:00", "2019-11-30 23:00"], dtype="period[H]", freq="H")
我們要把時間轉(zhuǎn)換為下一個月的早上9點,所以先轉(zhuǎn)換為按月顯示,并每個月加1(即下個月),然后按小時顯示并加9(早上9點)。
另外例子中s參數(shù)是start的簡寫,e參數(shù)是end的簡寫,Q-NOV即表示按季度,且每年的NOV是最后一個月。
更多了freq簡稱可以參考:http://pandas.pydata.org/pand...
asfreq()方法介紹可參考:http://pandas.pydata.org/pand...
分類目錄類型 Categoricals關(guān)于Categories類型介紹可以參考:http://pandas.pydata.org/pand...
類型轉(zhuǎn)換:astype("category")
df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]}) df Out[255]: id raw_grade 0 1 a 1 2 b 2 3 b 3 4 a 4 5 a 5 6 e df["grade"] = df["raw_grade"].astype("category") df["grade"] Out[257]: 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a, b, e]
重命名分類:cat
df["grade"].cat.categories = ["very good", "good", "very bad"] df["grade"] Out[269]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (3, object): [very good, good, very bad]
重分類:
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium","good", "very good"]) df["grade"] Out[271]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad, bad, medium, good, very good]
排列
df.sort_values(by="grade") Out[272]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good
分組
df.groupby("grade").size() Out[273]: grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64畫圖 Plotting
Series
ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)) ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2019", periods=1000)) ts = ts.cumsum() ts.plot() Out[277]:import matplotlib.pyplot as plt plt.show()
DataFrame畫圖
使用plot可以把所有的列都通過標(biāo)簽的形式展示出來:
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=["A", "B", "C", "D"]) df = df.cumsum() plt.figure() Out[282]:導(dǎo)入導(dǎo)出數(shù)據(jù) Getting Data In/Out
CSV
寫入:
df.to_csv("foo.csv")
讀取:
pd.read_csv("foo.csv")
HDF5
寫入:
df.to_hdf("foo.h5", "df")
讀取:
pd.read_hdf("foo.h5", "df")
Excel
寫入:
df.to_excel("foo.xlsx", sheet_name="Sheet1")
讀取:
pd.read_excel("foo.xlsx", "Sheet1", index_col=None, na_values=["NA"])異常處理 Gotchas
如果有一些異常情況比如:
>>> if pd.Series([False, True, False]): ... print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
可以參考如下鏈接:
http://pandas.pydata.org/pand...
http://pandas.pydata.org/pand...
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/43272.html
摘要:去吧,參加一個在上正在舉辦的實時比賽吧試試你所學(xué)到的全部知識微軟雅黑深度學(xué)習(xí)終于看到這個,興奮吧現(xiàn)在,你已經(jīng)學(xué)到了絕大多數(shù)關(guān)于機器學(xué)習(xí)的技術(shù),是時候試試深度學(xué)習(xí)了。微軟雅黑對于深度學(xué)習(xí),我也是個新手,就請把這些建議當(dāng)作參考吧。 如果你想做一個數(shù)據(jù)科學(xué)家,或者作為一個數(shù)據(jù)科學(xué)家你想擴展自己的工具和知識庫,那么,你來對地方了。這篇文章的目的,是給剛開始使用Python進行數(shù)據(jù)分析的人,指明一條全...
?作者主頁:小小明-代碼實體 ?簡介:Python領(lǐng)域優(yōu)質(zhì)創(chuàng)作者?、數(shù)據(jù)處理專家? ?歡迎點贊 ? 收藏 ?留言 ? 昨晚有位童鞋一道Pandas面試題完全沒有思路不會做,通過黃同學(xué)找到我時,這道題目離提交答案僅剩20分鐘,不過我最終還是在15分鐘之內(nèi)解決了問題,這整個過程簡直是刺激~??? 原題題目如下: 最終要求輸出: 要在20分鐘內(nèi)解決這個問題,對于我來說最困難的第一步就是理解...
摘要:它還使用執(zhí)行所謂的鏈?zhǔn)剿饕@通常會導(dǎo)致意外的結(jié)果。但這種方法的最大問題是計算的時間成本。這些都是一次產(chǎn)生一行的生成器方法,類似中使用的用法。在這種情況下,所花費的時間大約是方法的一半。根據(jù)每小時所屬的應(yīng)用一組標(biāo)簽。 作者:xiaoyu 微信公眾號:Python數(shù)據(jù)科學(xué) 知乎:python數(shù)據(jù)分析師 showImg(https://segmentfault.com/img/bVboe...
摘要:做一個搬運工,希望自己能努力學(xué)習(xí),也希望大神們的東西能讓更多的人看到不斷更新更新日志新增了網(wǎng)絡(luò)安全分類,整理了排版布局新增了的鏈接,將一些雜七雜八的東西弄到了一篇新文章上了,叫做積累與雜貨鋪一以及相關(guān)教程的規(guī)范與相關(guān)中文學(xué)習(xí)大本營中文文檔簡 做一個搬運工,希望自己能努力學(xué)習(xí),也希望大神們的東西能讓更多的人看到 不斷更新 更新日志:2017.10.13 新增了網(wǎng)絡(luò)安全分類,整理了排版布局...
摘要:做一個搬運工,希望自己能努力學(xué)習(xí),也希望大神們的東西能讓更多的人看到不斷更新更新日志新增了網(wǎng)絡(luò)安全分類,整理了排版布局新增了的鏈接,將一些雜七雜八的東西弄到了一篇新文章上了,叫做積累與雜貨鋪一以及相關(guān)教程的規(guī)范與相關(guān)中文學(xué)習(xí)大本營中文文檔簡 做一個搬運工,希望自己能努力學(xué)習(xí),也希望大神們的東西能讓更多的人看到 不斷更新 更新日志:2017.10.13 新增了網(wǎng)絡(luò)安全分類,整理了排版布局...
閱讀 6205·2021-11-22 15:32
閱讀 826·2021-11-11 16:54
閱讀 3164·2021-10-13 09:40
閱讀 2170·2021-09-03 10:35
閱讀 1838·2021-08-09 13:47
閱讀 1879·2019-08-30 15:55
閱讀 1939·2019-08-30 15:43
閱讀 2460·2019-08-29 17:06