国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

marshmallow快速上手

jhhfft / 649人閱讀

摘要:方法對應的是方法,它反序列化一個字典為數(shù)據(jù)結構。某些例如和內置了驗證器驗證集合時,錯誤字典將基于無效字段的索引作為鍵通過給的參數(shù)傳遞對象,可以執(zhí)行額外的驗證驗證函數(shù)可以返回布爾值或拋出異常。

快速上手 Declaring Schemas

首先創(chuàng)建一個基礎的user“模型”(只是為了演示,并不是真正的模型):

import datetime as dt

class User(object):
    def __init__(self, name, email):
        self.name = name
        self.email = email
        self.created_at = dt.datetime.now()

    def __repr__(self):
        return "".format(self=self)

然后通過定義一個映射屬性名稱到Field對象的類創(chuàng)建schema

from marshmallow import Schema, fields

class UserSchema(Schema):
    name = fields.Str()
    email = fields.Email()
    created_at = fields.DateTime()
Serializing Objects ("Dumping")

傳遞對象到創(chuàng)建的schema的dump方法,返回一個序列化字典對象(和一個錯誤字典對象,下文講):

from marshmallow import pprint

user = User(name="Monty", email="monty@python.org")
schema = UserSchema()
result = schema.dump(user)
pprint(result.data)
# {"name": "Monty",
#  "email": "monty@python.org",
#  "created_at": "2014-08-17T14:54:16.049594+00:00"}

也可以使用dumps方法序列化對象為JSON字符串:

json_result = schema.dumps(user)
pprint(json_result.data)
# "{"name": "Monty", "email": "monty@python.org", "created_at": "2014-08-17T14:54:16.049594+00:00"}"
Filtering output

使用only參數(shù)指定要序列化輸出的字段:

summary_schema = UserSchema(only=("name", "email"))
summary_schema.dump(user).data
# {"name": "Monty Python", "email": "monty@python.org"}

使用exclude參數(shù)指定不進行序列化輸出的字段。

Deserializing Objects ("Loading")

dump方法對應的是load方法,它反序列化一個字典為python數(shù)據(jù)結構。

load方法默認返回一個fields字段和反序列化值對應的字典對象:

from pprint import pprint

user_data = {
    "created_at": "2014-08-11T05:26:03.869245",
    "email": u"ken@yahoo.com",
    "name": u"Ken"
}
schema = UserSchema()
result = schema.load(user_data)
pprint(result.data)
# {"name": "Ken",
#  "email": "ken@yahoo.com",
#  "created_at": datetime.datetime(2014, 8, 11, 5, 26, 3, 869245)}
Deserializing to Objects

Schema子類中定義一個方法并用post_load裝飾,該方法接收一個要反序列化的數(shù)據(jù)字典返回原始python對象:

from marshmallow import Schema, fields, post_load

class UserSchema(Schema):
    name = fields.Str()
    email = fields.Email()
    created_at = fields.DateTime()

    @post_load
    def make_user(self, data):
        return User(**data)

現(xiàn)在調用load方法將返回一個User對象:

user_data = {
    "name": "Ronnie",
    "email": "ronnie@stones.com"
}
schema = UserSchema()
result = schema.load(user_data)
result.data  # => 
Handling Collections of Objects

可迭代的對象集合也可以進行序列化和反序列化。只需要設置many=True

user1 = User(name="Mick", email="mick@stones.com")
user2 = User(name="Keith", email="keith@stones.com")
users = [user1, user2]
schema = UserSchema(many=True)
result = schema.dump(users)  # OR UserSchema().dump(users, many=True)
result.data
# [{"name": u"Mick",
#   "email": u"mick@stones.com",
#   "created_at": "2014-08-17T14:58:57.600623+00:00"}
#  {"name": u"Keith",
#   "email": u"keith@stones.com",
#   "created_at": "2014-08-17T14:58:57.600623+00:00"}]
Validation

Schema.load()Schema.loads()返回值的第二個元素是一個驗證錯誤的字典。某些fields例如EmailURL內置了驗證器:

data, errors = UserSchema().load({"email": "foo"})
errors  # => {"email": [""foo" is not a valid email address."]}
# OR, equivalently
result = UserSchema().load({"email": "foo"})
result.errors  # => {"email": [""foo" is not a valid email address."]}

驗證集合時,錯誤字典將基于無效字段的索引作為鍵:

class BandMemberSchema(Schema):
    name = fields.String(required=True)
    email = fields.Email()

user_data = [
    {"email": "mick@stones.com", "name": "Mick"},
    {"email": "invalid", "name": "Invalid"},  # invalid email
    {"email": "keith@stones.com", "name": "Keith"},
    {"email": "charlie@stones.com"},  # missing "name"
]

result = BandMemberSchema(many=True).load(user_data)
result.errors
# {1: {"email": [""invalid" is not a valid email address."]},
#  3: {"name": ["Missing data for required field."]}}

通過給fields的validate參數(shù)傳遞callable對象,可以執(zhí)行額外的驗證:

class ValidatedUserSchema(UserSchema):
    # NOTE: This is a contrived example.
    # You could use marshmallow.validate.Range instead of an anonymous function here
    age = fields.Number(validate=lambda n: 18 <= n <= 40)

in_data = {"name": "Mick", "email": "mick@stones.com", "age": 71}
result = ValidatedUserSchema().load(in_data)
result.errors  # => {"age": ["Validator (71.0) is False"]}

驗證函數(shù)可以返回布爾值或拋出ValidationError異常。如果是拋出異常,其信息將保存在錯誤字典中:

from marshmallow import Schema, fields, ValidationError

def validate_quantity(n):
    if n < 0:
        raise ValidationError("Quantity must be greater than 0.")
    if n > 30:
        raise ValidationError("Quantity must not be greater than 30.")

class ItemSchema(Schema):
    quantity = fields.Integer(validate=validate_quantity)

in_data = {"quantity": 31}
result, errors = ItemSchema().load(in_data)
errors  # => {"quantity": ["Quantity must not be greater than 30."]}
Field Validators as Methods

使用validates裝飾器注冊方法驗證器:

from marshmallow import fields, Schema, validates, ValidationError

class ItemSchema(Schema):
    quantity = fields.Integer()

    @validates("quantity")
    def validate_quantity(self, value):
        if value < 0:
            raise ValidationError("Quantity must be greater than 0.")
        if value > 30:
            raise ValidationError("Quantity must not be greater than 30.")
strict Mode

在schema構造器或class Meta中設置strict=True,遇到不合法數(shù)據(jù)時將拋出異常,通過ValidationError.messages屬性可以訪問驗證錯誤的字典:

from marshmallow import ValidationError

try:
    UserSchema(strict=True).load({"email": "foo"})
except ValidationError as err:
    print(err.messages)# => {"email": [""foo" is not a valid email address."]}
Required Fields

設置required=True可以定義一個必要字段,調用Schema.load()方法時如果字段值缺失將驗證失敗并保存錯誤信息。

error_messages參數(shù)傳遞一個dict對象可以自定義必要字段的錯誤信息:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(
        required=True,
        error_messages={"required": "Age is required."}
    )
    city = fields.String(
        required=True,
        error_messages={"required": {"message": "City required", "code": 400}}
    )
    email = fields.Email()

data, errors = UserSchema().load({"email": "foo@bar.com"})
errors
# {"name": ["Missing data for required field."],
#  "age": ["Age is required."],
#  "city": {"message": "City required", "code": 400}}
Partial Loading

通過指定partial參數(shù),可以忽略某些缺失字段的required檢查:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(required=True)

data, errors = UserSchema().load({"age": 42}, partial=("name",))
# OR UserSchema(partial=("name",)).load({"age": 42})
data, errors  # => ({"age": 42}, {})

或者設置partial=True忽略所有缺失字段的required檢查:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(required=True)

data, errors = UserSchema().load({"age": 42}, partial=True)
# OR UserSchema(partial=True).load({"age": 42})
data, errors  # => ({"age": 42}, {})
Schema.validate

使用Schema.validate()可以只驗證輸入數(shù)據(jù)而不反序列化:

errors = UserSchema().validate({"name": "Ronnie", "email": "invalid-email"})
errors  # {"email": [""invalid-email" is not a valid email address."]}
Specifying Attribute Names

默認情況下schema序列化處理和field名稱相同的對象屬性。對于屬性和field不相同的場景,通過attribute參數(shù)指定field處理哪個屬性:

class UserSchema(Schema):
    name = fields.String()
    email_addr = fields.String(attribute="email")
    date_created = fields.DateTime(attribute="created_at")

user = User("Keith", email="keith@stones.com")
ser = UserSchema()
result, errors = ser.dump(user)
pprint(result)
# {"name": "Keith",
#  "email_addr": "keith@stones.com",
#  "date_created": "2014-08-17T14:58:57.600623+00:00"}
Specifying Deserialization Keys

默認情況下schema反序列化處理鍵和field名稱相同的字典。可以通過load_from參數(shù)指定額外處理的字典鍵值:

class UserSchema(Schema):
    name = fields.String()
    email = fields.Email(load_from="emailAddress")

data = {
    "name": "Mike",
    "emailAddress": "foo@bar.com"
}
s = UserSchema()
result, errors = s.load(data)
#{"name": u"Mike",
# "email": "foo@bar.com"}
Specifying Serialization Keys

如果要序列化輸出不想使用field名稱作為鍵,可以通過dump_to參數(shù)指定(和load_from相反):

class UserSchema(Schema):
    name = fields.String(dump_to="TheName")
    email = fields.Email(load_from="CamelCasedEmail", dump_to="CamelCasedEmail")

data = {
    "name": "Mike",
    "email": "foo@bar.com"
}
s = UserSchema()
result, errors = s.dump(data)
#{"TheName": u"Mike",
# "CamelCasedEmail": "foo@bar.com"}
Refactoring: Implicit Field Creation

當schema中有很多屬性時,為每個屬性指定field類型會產生大量的重復工作,尤其是大部分屬性為原生的python數(shù)據(jù)類型時。

class Meta允許開發(fā)人員指定序列化哪些屬性,Marshmallow會基于屬性類型選擇合適的field類型:

# 重構UserSchema
class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())

    class Meta:
        fields = ("name", "email", "created_at", "uppername")


user = User(name="erika", email="marshmallow@126.com")
schema = UserSchema()
result = schema.dump(user)
print(result.data)

# {"created_at": "2019-05-20T15:45:27.760000+00:00", "uppername": "ERIKA", "name": "erika", "email": "marshmallow@126.com"}

除了顯式聲明的field外,使用additional選項可以指定還要包含哪些fields。以下代碼等同于上面的代碼:

class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())
    class Meta:
        # No need to include "uppername"
        additional = ("name", "email", "created_at")
Ordering Output

設置ordered=True可以維護序列化輸出的field順序,此時序列化字典為collections.OrderedDict類型:

from collections import OrderedDict

class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())
    class Meta:
        fields = ("name", "email", "created_at", "uppername")
        ordered = True

u = User("Charlie", "charlie@stones.com")
schema = UserSchema()
result = schema.dump(u)
assert isinstance(result.data, OrderedDict)
# marshmallow"s pprint function maintains order
pprint(result.data, indent=2)
# {
#   "name": "Charlie",
#   "email": "charlie@stones.com",
#   "created_at": "2014-10-30T08:27:48.515735+00:00",
#   "uppername": "CHARLIE"
# }
"Read-only" and "Write-only" Fields

在web API上下文中,dump_onlyload_only參數(shù)分別類似于只讀和只寫的概念:

class UserSchema(Schema):
    name = fields.Str()
    # password is "write-only"
    password = fields.Str(load_only=True)
    # created_at is "read-only"
    created_at = fields.DateTime(dump_only=True)
更多教程

marshmallow之schema嵌套
marshmallow之自定義Field
marshmallow之Schema延伸功能

文章版權歸作者所有,未經(jīng)允許請勿轉載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/43841.html

相關文章

  • marshmallow之自定義Field

    摘要:有三種方式創(chuàng)建自定義的。下面的例子判斷某個對象是否是某個對象的作者,以及的屬性是否出現(xiàn)單詞自定義錯誤信息字段驗證產生的錯誤信息可以在類級別或實例級別配置。在類級別時,可以定義為錯誤碼和錯誤信息的字典映射在類實例化時,給參數(shù)傳參對象 有三種方式創(chuàng)建自定義的field。 創(chuàng)建Field類的子類 創(chuàng)建繼承自marshmallow.fields.Field類的子類并實現(xiàn)_serialize和/...

    AWang 評論0 收藏0
  • marshmallow之Schema延伸功能

    摘要:創(chuàng)建實例時如果傳遞了,表示需要接收輸入數(shù)據(jù)集合,裝飾器注冊預處理和后處理方法時需要傳遞參數(shù)。 預處理和后處理方法 數(shù)據(jù)的預處理和后處理方法通過pre_load, post_load, pre_dump和post_dump裝飾器注冊: from marshmallow import Schema, fields, pre_load class UserSchema(Schema): ...

    hzx 評論0 收藏0
  • marshmallow之schema嵌套

    摘要:嵌套可以嵌套使用以表示對象間的關系如外鍵關系。在下面的例子中,和對象是一對多的關系必須使用或參數(shù)避免無限遞歸也可以使用導入模塊的方式傳遞嵌套,如自嵌套給傳遞字符串參數(shù)表示和對象本身的關系 schema嵌套 schema可以嵌套使用以表示對象間的關系(如外鍵關系)。 例如下例中Blog有一個用User對象表示的author屬性: import datetime as dt class ...

    miracledan 評論0 收藏0
  • SegmentFault 技術周刊 Vol.4 - 這份 Android 有點甜

    摘要:閱讀本期周刊,你將快速入門,開啟甜蜜之旅。然則的原理負責發(fā)送以及處理消息,創(chuàng)建消息隊列并不斷從隊列中取出消息交給,則用于保存消息。 showImg(/img/bVCN99?w=900&h=385); 2016 年 8 月,Android 7.0 Nougat(牛軋?zhí)牵┱桨l(fā)布,那么問題來了,你 Marshmallow 了么(? -? ?) Cupcake、Donut、Gingerbre...

    jay_tian 評論0 收藏0

發(fā)表評論

0條評論

jhhfft

|高級講師

TA的文章

閱讀更多
最新活動
閱讀需要支付1元查看
<