国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

分類模型——變量選擇

CloudDeveloper / 1531人閱讀

摘要:系數反映每個特征的影響力。越大表示該特征在分類中起到的作用越大

import numpy as np  
import scipy as sp  
import pandas as pd
import matplotlib.pyplot as plt
Split train and test
from sklearn.cross_validation import train_test_split
x_train, x_test, y_train, y_test = train_test_split(customer.ix[:,0:customer.columns.size-1], customer.ix[:,customer.columns.size-1], test_size = 0.2)
x_train, x_test, y_train, y_test = train_test_split(order.ix[:,0:order.columns.size-1], order.ix[:,order.columns.size-1], test_size = 0.2)
Pearson Correlation for Order
from scipy.stats import pearsonr  

prr = []
for i in range(order.columns.size-1):
   frame = pearsonr(order.iloc[:,i], order.iloc[:,order.columns.size-1]) 
   prr.append(frame)

result = pd.concat([pd.DataFrame(order.columns.values.tolist()), pd.DataFrame(prr)], axis=1) 
result.columns = ["Features", "Pearson", "Pvalue"]
result
result.to_csv("result.csv", index = True, header = True)
Pearson Correlation for Customer
from scipy.stats import pearsonr  
prr = []
for i in range(customer.columns.size-1):
   frame = pearsonr(customer.iloc[:,i], customer.iloc[:,customer.columns.size-1]) 
   prr.append(frame)

result = pd.concat([pd.DataFrame(customer.columns.values.tolist()), pd.DataFrame(prr)], axis=1) 
result.columns = ["Features", "Pearson", "Pvalue"]
result
result.to_csv("result.csv", index = True, header = True)
Random forest
from sklearn.ensemble import RandomForestRegressor  
clf = RandomForestRegressor()
clf.fit(x_train, y_train)

from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_jobs=100)
clf.fit(x_train, y_train)
MIC
from minepy import MINE
mic = []
for i in range(customer.columns.size-1):
   frame = m.compute_score(customer.iloc[:,i], customer.iloc[:,34]) 
   prr.append(frame)
result = pd.concat([pd.DataFrame(customer.columns.values.tolist()), pd.DataFrame(prr)], axis=1) 
result.columns = ["Features", "Pearson", "Pvalue"]
result.to_csv("result.csv", index = True, header = True)
Feature Correlation
corr = customer.corr()
corr.to_csv("result.csv", index = True, header = True)

tar_corr = lambda x: x.corr(x["tar"])
cus_call.apply(tar_corr)
cus_call.corrwith(cus_call.tar)
Feature Importance

系數反映每個特征的影響力。越大表示該特征在分類中起到的作用越大

importances = pd.DataFrame(sorted(zip(x_train.columns, map(lambda x: round(x, 4), clf.feature_importances_)), reverse=True))
importances.columns = ["Features", "Importance"]
importances.to_csv("result.csv", index = True, header = True)

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/44567.html

相關文章

  • 隨機森林算法入門(python)

    摘要:翻譯自昨天收到推送了一篇介紹隨機森林算法的郵件,感覺作為介紹和入門不錯,就順手把它翻譯一下。隨機森林引入的隨機森林算法將自動創建隨機決策樹群。回歸隨機森林也可以用于回歸問題。結語隨機森林相當起來非常容易。 翻譯自:http://blog.yhat.com/posts/python-random-forest.html 昨天收到yhat推送了一篇介紹隨機森林算法的郵件,感覺作為介紹和入門...

    張遷 評論0 收藏0
  • 機器學習算法基礎(使用Python代碼)

    摘要:機器學習算法類型從廣義上講,有種類型的機器學習算法。強化學習的例子馬爾可夫決策過程常用機器學習算法列表以下是常用機器學習算法的列表。我提供了對各種機器學習算法的高級理解以及運行它們的代碼。決策樹是一種監督學習算法,主要用于分類問題。 showImg(https://segmentfault.com/img/remote/1460000019086462); 介紹 谷歌的自動駕駛汽車和機...

    BenCHou 評論0 收藏0

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<