国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

機器學習之數據歸一化

W4n9Hu1 / 1111人閱讀

摘要:機器學習中,數據歸一化是非常重要,如果不進行數據歸一化,可能會導致模型壞掉或者訓練出一個奇怪的模型。解決方法就是將是數據映射到同一尺度,這就是數據歸一化。數據歸一化的兩個常用方式為最值歸一化和均值方差歸一化。

機器學習中,數據歸一化是非常重要,如果不進行數據歸一化,可能會導致模型壞掉或者訓練出一個奇怪的模型。

為什么要進行數據歸一化

現在有一個訓練數據集,包含兩個樣本,內容如下:

腫瘤大小(cm) 發現時間(day)
樣本1 1 200
樣本2 5 100

以 k-近鄰算法為例,“發現時間”的數值比“腫瘤大小”的數值大很多,樣本間的距離被“發現時間”主導,訓練出來的模型主要由“發現時間”影響,甚至“腫瘤大小”的影響可忽略不計。

解決方法就是將是數據映射到同一尺度,這就是數據歸一化。

數據歸一化的兩個常用方式為:最值歸一化均值方差歸一化

最值歸一化(normalization)

最值歸一化就是將數據映射到 0~1 之間,適用于數據分布有明顯邊界的情況。將樣本的特征值減去該特征的最小值,再除以該特征的取值區間,對應的數學公式為:

$$ x_{scale} = frac{x-x_{min}}{x_{max}-x_{min}} $$

使用 np.random 生成一個 50*2 的二維整形數組,并轉換成浮點型:

import numpy as np

X = np.random.randint(0, 100, size=(50, 2))
X = np.array(X, dtype=float)

對于第一列數據,$x_{min}$ = np.min(X[:, 0]),$x_{max}$ = np.max(X[:, 0])

X[:, 0] = (X[:, 0] - np.min(X[:, 0])) / (np.max(X[:, 0]) - np.min(X[:, 0]))

第二列數據同理:

X[:, 1] = (X[:, 1] - np.min(X[:, 1])) / (np.max(X[:, 1]) - np.min(X[:, 1]))

此時樣本的所有特征值都在 0~1 之間。

均值方差歸一化(standardization)

均值方差歸一化就是把所有數據歸一到均值為0、方差為1的分布中。對于數據分布有無明顯邊界都適用。數學公式為:

$$ x_{scale} = frac{x-x_{mean}}{s} $$

$x_{mean}$:特征均值,$s$:特征方差。

同樣使用 np.random 生成一個 50*2 的二維整形數組,并轉換成浮點型:

X2 = np.random.randint(0, 100, size=(50, 2))
X2 = np.array(X2, dtype=float)

對于第一列數據,$x_{mean}$ = np.mean(X2[:, 0]),$s$ = np.std(X2[:, 0])

X2[:, 0] = (X2[:, 0] - np.mean(X2[:, 0])) / np.std(X2[:, 0])

第二列數據同理:

X2[:, 1] = (X2[:, 1] - np.mean(X2[:, 1])) / np.std(X2[:, 1])

可以查看 X2 各列的均值非常接近0,方差非常接近1:

# np.mean(X2[:, 0])
-4.440892098500626e-18

# np.mean(X2[:, 1])
-1.2878587085651815e-16

# np.std(X2[:, 0])
0.9999999999999999

# np.std(X2[:, 1])
0.9999999999999999
對測試數據集進行歸一化處理

前面都是在對訓練數據集進行歸一化處理,而對測試數據集的歸一化處理有所不同。由于測試數據是在模擬真實環境,而在真實環境中很難拿到所有的測試數據的均值和方差,此時將測試數據集也進行上面的操作是錯誤的,正確的方法是利用訓練數據集歸一化的數據。

如測試數據集的最值歸一化處理為:

$$ test_{scale} = frac{test-min_{train}}{max_{train}-min_{train}} $$

測試數據集的均值方差歸一化處理為:

$$ test_{scale} = frac{test-mean_{train}}{s_{train}} $$

以均值方差歸一化處理為例,Scikit Learn 中封裝了 StandardScaler 類用于訓練數據集和測試數據集的歸一化處理。

以鳶尾花的數據為例:

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

StandardScaler 類位于 preprocessing 模塊中:

from sklearn.preprocessing import StandardScaler
standardScaler = StandardScaler()

將訓練數據傳入 fit() 方法中,該方法會保存訓練數據的方差和均值,并返回 StandardScaler 實例本身:

standardScaler.fit(X_train)

其中 mean_scale_ 屬性保存了均值和方差:

# standardScaler.mean_
array([5.83416667, 3.08666667, 3.70833333, 1.17      ])

# standardScaler.scale_
array([0.81019502, 0.44327067, 1.76401924, 0.75317107])

接著可以向 transform() 方法中傳入訓練數據和測試數據獲取歸一化處理后的數據:

X_train = standardScaler.transform(X_train)
X_test = standardScaler.transform(X_test)
源碼地址

Github | ML-Algorithms-Action

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/44882.html

相關文章

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<