国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

TensorFlow 安裝筆記

2bdenny / 3149人閱讀

摘要:而且我們可以看到他自動幫我們安裝了,,等等需要注意的是最后會出現(xiàn)這里選擇才能把加入環(huán)境變量中,然后才能使用不然之后就得手動配置。來安裝支持的。步驟中下載太慢了,需要個小時,還是直接在線安裝吧,先下載這個,然后這個只需要分鐘左右。

前言

最近上了幾門深度學習的公開課,還是覺得不過癮,總覺得要搞一個框架來試試。那么caffe,tensorflow,torch等等選哪一個呢?經(jīng)過一番比較我還是選擇tensorflow,首先他是一個更通用的框架,而且對python支持最好,其次還有google支持,也是開源的,相信在未來無論是學術界還是工業(yè)界,他都會流行起來的。

安裝-實況記錄

首先得在我的電腦(win10)上裝一個雙系統(tǒng)(不裝虛擬機是因為虛擬機對顯卡等資源的利用不是很好),就裝一個ubuntu吧(版本14.10),怎么裝就不寫了,畢竟網(wǎng)上一大把,然后就是安裝tensorflow了,官網(wǎng)提供了5種安裝辦法,基于pip,基于docker,基于Anaconda,基于Virtualenv,基于源碼。由于Anaconda包含了眾多的科學計算庫,相信對未來的工作能大有用處,所以我就選擇了基于Anaconda的安裝方式。

1.首先在這里選擇相應的Anaconda版本下載。

2.進入下載目錄,輸入命令 bash Anaconda2-4.1.1-Linux-x86_64.sh

然后根據(jù)提示進行安裝,他會提示安裝目錄等。而且我們可以看到他自動幫我們安裝了python2.7.12,beautifulsoup,ipython等等:

installing: python-2.7.12-1 ...
installing: _nb_ext_conf-0.2.0-py27_0 ...
installing: alabaster-0.7.8-py27_0 ...
installing: anaconda-client-1.4.0-py27_0 ...
installing: anaconda-navigator-1.2.1-py27_0 ...
installing: argcomplete-1.0.0-py27_1 ...
installing: astropy-1.2.1-np111py27_0 ...
installing: babel-2.3.3-py27_0 ...
installing: backports-1.0-py27_0 ...
installing: backports_abc-0.4-py27_0 ...
installing: beautifulsoup4-4.4.1-py27_0 ...

需要注意的是最后會出現(xiàn):

Do you wish the installer to prepend the Anaconda2 install location
to PATH in your /root/.bashrc ? [yes|no]

這里選擇yes才能把anaconda加入環(huán)境變量(path)中,然后才能使用,不然之后就得手動配置path。由于修改了環(huán)境變量,所以打開一個新的終端來測試安裝結(jié)果:在新的終端中輸入python,顯示:

Python 2.7.12 |Anaconda 4.1.1 (64-bit)| (default, Jul  2 2016, 17:42:40) 
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org

可見的確是安裝成功了。

3.conda create -n tensorflow python=2.7 來建立一個conda 計算環(huán)境

4.source activate tensorflow 來激活計算環(huán)境。

5.pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.8.0rc0-cp27-none-linux_x86_64.whl 來安裝支持GPU的tensorflow。

需要注意,支持GPU要先安裝Cuda Toolkit 和 CUDNN Toolkit(先在官網(wǎng)注冊)

6.安裝成功后打開python,

import tensorflow as tf

然后報了一堆錯:

Traceback (most recent call last):
  File "", line 1, in 
  File "/root/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/__init__.py", line 23, in 
    from tensorflow.python import *
  File "/root/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/__init__.py", line 45, in 
    from tensorflow.python import pywrap_tensorflow
  File "/root/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/pywrap_tensorflow.py", line 28, in 
    _pywrap_tensorflow = swig_import_helper()
  File "/root/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/python/pywrap_tensorflow.py", line 24, in swig_import_helper
    _mod = imp.load_module("_pywrap_tensorflow", fp, pathname, description)
ImportError: libcudart.so.7.5: cannot open shared object file: No such file or directory

看樣子是我還沒有安裝好cuda所致。步驟5中下載Cuda Toolkit 太慢了,需要10個小時,還是直接在線安裝吧,先下載這個,然后

dpkg -i cuda-repo-ubuntu1410_7.0-28_amd64.deb 
apt-get update
apt-get install cuda 

這個只需要20分鐘左右。安裝好過后cuda應該就在/usr/local/路徑下了。然后安裝CUDNN Toolkit,進入其下載目錄:

tar xvzf cudnn-7.0-linux-x64-v3.0-prod.tgz
cp cuda/include/cudnn.h  /usr/local/cuda/include
cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

然后設置 LD_LIBRARY_PATH 和 CUDA_HOME 環(huán)境變量. 可以將下面的命令 添加到 ~/.bashrc文件中, 這樣每次登陸后自動生效:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
export CUDA_HOME=/usr/local/cuda

7.測試

測試之時發(fā)現(xiàn)依然報上面的錯。libcudart.so.7.5沒找到,我先在磁盤上查找這個文件,locate libcudart.so.7.5,果然沒有,應該是我的cuda版本低了吧,cd /usr/local/cuda/lib64,然后果然發(fā)現(xiàn)了libcudart.so.7.0.28,而不是 libcudart.so.7.5

8.重裝Cuda Toolkit

apt-get remove cuda
apt-get autoremove
#下載http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_7.5-18_amd64.deb
apt-get remove cuda-repo-ubuntu1410
dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb#正試圖覆蓋 /etc/apt/sources.list.d/cuda.list,它同時被包含于軟件包 cuda-repo-ubuntu1410 7.0-28,所以必須要上一步
apt-get update
sudo apt-get install cuda
#報錯:cuda : 依賴: cuda-7-5 (= 7.5-18) 但是它將不會被安裝 
#E: 無法修正錯誤,因為您要求某些軟件包保持現(xiàn)狀,就是它們破壞了軟件包間的依賴關系。

太亂了,還是重頭來過吧

同上

同上

conda create -n tensor python=2.7

source activate tensor

安裝Cuda Toolkit,先下載,進入目錄:

dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb
apt-get update
apt-get install cuda
#報錯:cuda : 依賴: cuda-7-5 (= 7.5-18) 但是它將不會被安裝 
#E: 無法修正錯誤,因為您要求某些軟件包保持現(xiàn)狀,就是它們破壞了軟件包間的依賴關系。
#也是醉了

裝錯了版本真是麻煩,清理一下系統(tǒng)吧

apt-get --purge remove nvidia-*  #徹底卸載nvidia
rm -rf anaconda2
# .bashrc文件中刪除關于把anaconda加入環(huán)境變量的那一句
#還是不行,依舊報錯:cuda : 依賴: cuda-7-5 (= 7.5-18) 但是它將不會被安裝 
#E: 無法修正錯誤,因為您要求某些軟件包保持現(xiàn)狀,就是它們破壞了軟件包間的依賴關系。

搞不定了,還是換成本地安裝試試吧,下載cuda 和 cudnn。奇怪:ubuntu下載很慢,但是windows上就快好多了,在windows上下好直接在ubuntu中拷貝過去吧。

安裝-無bug版 1.

由于包依賴問題沒法解決,重裝了系統(tǒng)Ubuntu14.04.5

2.

下載cuda 和cudnn,進入下載目錄

dpkg -i cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda
#稍等片刻,然后配置cudnn
tar xvzf cudnn-7.5-linux-x64-v5.0-ga-tgz
cp cuda/include/cudnn.h /usr/local/cuda/include
cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
3.

修改 .bashrc 加入:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda
4.

下載Anaconda,進入下載目錄

bash Anaconda2-4.1.1-Linux-x86_64.sh
注意修改配置,根據(jù)你的喜好來修改目錄
5.

重新打開一個終端

conda create -n tfgpu python=2.7
source activate tfgpu
pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0rc0-cp27-none-linux_x86_64.whl
6.

裝好過后,重啟,黑屏了。應該是雙顯卡的問題,不管了,先進入tty試試tensorflow是否裝好了。

Ctrl+Alt+F2#進入tty2,并登陸
root@mageek-ThinkPad-T550:~# source activate tfgpu
(tfgpu) root@mageek-ThinkPad-T550:~# python
Python 2.7.12 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:42:40) 
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org
>>> import tensorflow as tf
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
>>> sess = tf.Session()
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:925] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties: 
name: GeForce 940M
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:08:00.0
Total memory: 1023.88MiB
Free memory: 997.54MiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:839] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce 940M, pci bus id: 0000:08:00.0)
>>> 
(tfgpu) root@mageek-ThinkPad-T550:~# source deactivate
可見是安裝成功了
7. 解決黑屏
vim /etc/modprobe.d/blacklist.conf
#添加如下幾句來屏蔽一些軟件
blacklist amd76x_edac
blacklist vga16fb
blacklist nouveau
blacklist rivafb
blacklist nvidiafb
blacklist rivatv
#退出
sudo prime-select intel #優(yōu)先intel集顯
reboot#重啟就進入圖像化界面了
8. IPython

這個時候直接用ipython 可以進入界面,但是沒法import tensorflow,要先安裝conda install ipython然后再次進入ipython,就可以了,因為只有執(zhí)行了這個命令才能將ipython加入虛擬環(huán)境tfgpu,在同一個環(huán)境中ipython才能找到tensorflow。

9. IDE

雖然IPython已經(jīng)比原生的python終端好多了,但是每次都要敲相同命令,比如import tensorflow as tf還是相當麻煩的,所以還是要搞一個IDE才行。這里推薦Komodo Edit,下載過后,解壓。進入目錄運行 ./install.sh 然后按照提示修改安裝目錄(注意要有權限)。比如我的目錄就是 /usr/local/Komodo-Edit-10/ 然后加入環(huán)境變量。這樣就可以重新打開一個終端,命令 komodo,就可以打開這個IDE了,然后配置一些基本的選項比如縮進,配色方案等等就可以正式使用了。

新建一個 tf1.py:

import tensorflow as tf
import numpy as np

# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b

# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# Before starting, initialize the variables.  We will "run" this first.
init = tf.initialize_all_variables()

# Launch the graph.
sess = tf.Session()
sess.run(init)

# Fit the line.
for step in range(201):
    sess.run(train)
    if step % 20 == 0:
        print(step, sess.run(W), sess.run(b))

# Learns best fit is W: [0.1], b: [0.3]

運行:

#進入文件目錄
source activate tfgpu
python tf1.py

結(jié)果:

I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:925] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties: 
name: GeForce 940M
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:08:00.0
Total memory: 1023.88MiB
Free memory: 997.54MiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:839] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce 940M, pci bus id: 0000:08:00.0)
(0, array([-0.09839484], dtype=float32), array([ 0.5272761], dtype=float32))
(20, array([ 0.02831561], dtype=float32), array([ 0.33592272], dtype=float32))
(40, array([ 0.07941294], dtype=float32), array([ 0.31031665], dtype=float32))
(60, array([ 0.09408762], dtype=float32), array([ 0.30296284], dtype=float32))
(80, array([ 0.09830203], dtype=float32), array([ 0.3008509], dtype=float32))
(100, array([ 0.09951238], dtype=float32), array([ 0.30024436], dtype=float32))
(120, array([ 0.09985995], dtype=float32), array([ 0.3000702], dtype=float32))
(140, array([ 0.09995978], dtype=float32), array([ 0.30002016], dtype=float32))
(160, array([ 0.09998845], dtype=float32), array([ 0.30000579], dtype=float32))
(180, array([ 0.09999669], dtype=float32), array([ 0.30000168], dtype=float32))
(200, array([ 0.09999905], dtype=float32), array([ 0.30000049], dtype=float32))
10.NN
#找到tensorflow的目錄
python -c "import os; import inspect; import tensorflow; print(os.path.dirname(inspect.getfile(tensorflow)))"
#/root/anaconda2/envs/tfgpu/lib/python2.7/site-packages/tensorflow
cd /root/anaconda2/envs/tfgpu/lib/python2.7/site-packages/tensorflow/models/image/mnist/#j進入目錄
python convolutional.py
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library    libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
Extracting data/train-images-idx3-ubyte.gz
Traceback (most recent call last):
  File "convolutional.py", line 326, in 
    tf.app.run()
  File "/root/anaconda2/envs/tfgpu/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 30, in run
    sys.exit(main(sys.argv))
  File "convolutional.py", line 138, in main
    train_data = extract_data(train_data_filename, 60000)
  File "convolutional.py", line 85, in extract_data
    buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS)
  File "/root/anaconda2/envs/tfgpu/lib/python2.7/gzip.py", line 268, in read
    self._read(readsize)
  File "/root/anaconda2/envs/tfgpu/lib/python2.7/gzip.py", line 315, in _read
    self._read_eof()
  File "/root/anaconda2/envs/tfgpu/lib/python2.7/gzip.py", line 354, in _read_eof
    hex(self.crc)))
IOError: CRC check failed 0x4b01c89e != 0xd2b9b600L

看來是CRC校驗出錯,還是直接去官網(wǎng)下載吧,然后直接拷貝到data路徑中。讀一下convolutional.py就知道下載路徑了,其實比較一下data里程序已經(jīng)下載的文件和官網(wǎng)的文件就知道程序下載的文件出錯了,文件小了不少,應該是丟包了。
再次執(zhí)行:

I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:925] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties: 
name: GeForce 940M
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:08:00.0
Total memory: 1023.88MiB
Free memory: 997.54MiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:839] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce 940M, pci bus id: 0000:08:00.0)
Initialized!
E tensorflow/stream_executor/cuda/cuda_dnn.cc:347] Loaded runtime CuDNN library: 5005 (compatibility version 5000) but source was compiled with 4007 (compatibility version 4000).  If using a binary install, upgrade your CuDNN library to match.  If building from sources, make sure the library loaded at runtime matches a compatible version specified during compile configuration.
F tensorflow/core/kernels/conv_ops.cc:457] Check failed: stream->parent()->GetConvolveAlgorithms(&algorithms) 
Aborted (core dumped)

意思就是cudnn我安裝的是v5,但是cuda7.5支持的是v4,所以就去下載v4,然后按照步驟2來重新配置cudnnv4:

#這里會覆蓋cudnnv5,所以記得備份cudnnv5,萬一用得上,我把原來解壓的cuda改為cudnn5005
cd /usr/local/cuda/lib64
rm -f libcudnn* #刪掉cudnnv5
#先進入cudnnv4下載目錄
tar xvzf cudnn-7.0-linux-x64-v4.0-prod.tgz
cp cuda/include/cudnn.h /usr/local/cuda/include#用v4覆蓋v5
cp cuda/lib64/libcudnn* /usr/local/cuda/lib64#加入v4
chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

再次執(zhí)行:

cd /root/anaconda2/envs/tfgpu/lib/python2.7/site-packages/tensorflow/models/image/mnist/#j進入目錄
python convolutional.py

結(jié)果:

I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
E tensorflow/stream_executor/cuda/cuda_driver.cc:491] failed call to cuInit: CUDA_ERROR_NO_DEVICE
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:153] retrieving CUDA diagnostic information for host: mageek-ThinkPad-T550
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:160] hostname: mageek-ThinkPad-T550
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:185] libcuda reported version is: 352.63.0
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:356] driver version file contents: """NVRM version: NVIDIA UNIX x86_64 Kernel Module  352.63  Sat Nov  7 21:25:42 PST 2015
GCC version:  gcc version 4.8.4 (Ubuntu 4.8.4-2ubuntu1~14.04.3) 
"""
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:189] kernel reported version is: 352.63.0
I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:293] kernel version seems to match DSO: 352.63.0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:81] No GPU devices available on machine.
Initialized!
Step 0 (epoch 0.00), 5.4 ms
Minibatch loss: 12.054, learning rate: 0.010000
Minibatch error: 90.6%
Validation error: 84.6%
Step 100 (epoch 0.12), 280.2 ms
Minibatch loss: 3.287, learning rate: 0.010000
Minibatch error: 6.2%
Validation error: 7.0%
Step 200 (epoch 0.23), 281.0 ms
Minibatch loss: 3.491, learning rate: 0.010000
Minibatch error: 12.5%
Validation error: 3.6%
Step 300 (epoch 0.35), 281.0 ms
Minibatch loss: 3.265, learning rate: 0.010000
Minibatch error: 10.9%
Validation error: 3.2%
Step 400 (epoch 0.47), 293.0 ms
Minibatch loss: 3.221, learning rate: 0.010000
Minibatch error: 7.8%
Validation error: 2.7%
Step 500 (epoch 0.58), 289.0 ms
Minibatch loss: 3.292, learning rate: 0.010000
Minibatch error: 7.8%
Validation error: 2.7%
Step 600 (epoch 0.70), 287.4 ms
Minibatch loss: 3.227, learning rate: 0.010000
Minibatch error: 7.8%
Validation error: 2.6%
Step 700 (epoch 0.81), 287.0 ms
Minibatch loss: 3.015, learning rate: 0.010000
Minibatch error: 3.1%
Validation error: 2.4%
Step 800 (epoch 0.93), 287.0 ms
Minibatch loss: 3.152, learning rate: 0.010000
Minibatch error: 6.2%
Validation error: 2.0%
Step 900 (epoch 1.05), 287.7 ms
Minibatch loss: 2.938, learning rate: 0.009500
Minibatch error: 3.1%
Validation error: 1.6%
Step 1000 (epoch 1.16), 287.4 ms
Minibatch loss: 2.862, learning rate: 0.009500
Minibatch error: 1.6%
Validation error: 1.7%
.
.
.

可見程序是跑起來了,但是沒有找到GPU,

reboot
#.....
source activate tfgpu
cd /root/anaconda2/envs/tfgpu/lib/python2.7/site-packages/tensorflow/models/image/mnist/#j進入目錄
python convolutional.py

結(jié)果:

I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:925] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties: 
name: GeForce 940M
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:08:00.0
Total memory: 1023.88MiB
Free memory: 997.54MiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:839] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce 940M, pci bus id: 0000:08:00.0)
Initialized!
Step 0 (epoch 0.00), 81.3 ms
Minibatch loss: 12.054, learning rate: 0.010000
Minibatch error: 90.6%
Validation error: 84.6%
Step 100 (epoch 0.12), 44.4 ms
Minibatch loss: 3.291, learning rate: 0.010000
Minibatch error: 6.2%
Validation error: 7.1%
Step 200 (epoch 0.23), 44.4 ms
Minibatch loss: 3.462, learning rate: 0.010000
Minibatch error: 12.5%
Validation error: 3.6%
Step 300 (epoch 0.35), 44.0 ms
Minibatch loss: 3.188, learning rate: 0.010000
Minibatch error: 4.7%
Validation error: 3.2%
Step 400 (epoch 0.47), 44.3 ms
Minibatch loss: 3.253, learning rate: 0.010000
Minibatch error: 9.4%
Validation error: 2.8%
Step 500 (epoch 0.58), 44.3 ms
Minibatch loss: 3.288, learning rate: 0.010000
Minibatch error: 9.4%
Validation error: 2.5%
Step 600 (epoch 0.70), 43.9 ms
Minibatch loss: 3.180, learning rate: 0.010000
Minibatch error: 6.2%
Validation error: 2.8%
Step 700 (epoch 0.81), 44.2 ms
Minibatch loss: 3.033, learning rate: 0.010000
Minibatch error: 3.1%
Validation error: 2.4%
Step 800 (epoch 0.93), 44.0 ms
Minibatch loss: 3.149, learning rate: 0.010000
Minibatch error: 6.2%
Validation error: 2.0%
Step 900 (epoch 1.05), 44.0 ms
Minibatch loss: 2.919, learning rate: 0.009500
Minibatch error: 3.1%
Validation error: 1.6%
Step 1000 (epoch 1.16), 43.8 ms
Minibatch loss: 2.849, learning rate: 0.009500
Minibatch error: 0.0%
Validation error: 1.7%
Step 1100 (epoch 1.28), 43.6 ms
Minibatch loss: 2.822, learning rate: 0.009500
Minibatch error: 0.0%
Validation error: 1.6%
Step 1200 (epoch 1.40), 43.6 ms
Minibatch loss: 2.979, learning rate: 0.009500
Minibatch error: 7.8%
Validation error: 1.5%
Step 1300 (epoch 1.51), 43.6 ms
Minibatch loss: 2.763, learning rate: 0.009500
Minibatch error: 0.0%
Validation error: 1.9%
Step 1400 (epoch 1.63), 43.6 ms
Minibatch loss: 2.781, learning rate: 0.009500
Minibatch error: 3.1%
Validation error: 1.5%
Step 1500 (epoch 1.75), 43.6 ms
Minibatch loss: 2.861, learning rate: 0.009500
Minibatch error: 6.2%
Validation error: 1.4%
Step 1600 (epoch 1.86), 43.8 ms
Minibatch loss: 2.698, learning rate: 0.009500
Minibatch error: 1.6%
Validation error: 1.3%
Step 1700 (epoch 1.98), 43.9 ms
Minibatch loss: 2.650, learning rate: 0.009500
Minibatch error: 0.0%
Validation error: 1.3%
Step 1800 (epoch 2.09), 44.1 ms
Minibatch loss: 2.652, learning rate: 0.009025
Minibatch error: 1.6%
Validation error: 1.3%
Step 1900 (epoch 2.21), 44.1 ms
Minibatch loss: 2.655, learning rate: 0.009025
Minibatch error: 1.6%
Validation error: 1.3%
Step 2000 (epoch 2.33), 43.9 ms
Minibatch loss: 2.640, learning rate: 0.009025
Minibatch error: 3.1%
Validation error: 1.2%
Step 2100 (epoch 2.44), 44.0 ms
Minibatch loss: 2.568, learning rate: 0.009025
Minibatch error: 0.0%
Validation error: 1.1%
Step 2200 (epoch 2.56), 44.0 ms
Minibatch loss: 2.564, learning rate: 0.009025
Minibatch error: 0.0%
Validation error: 1.1%
Step 2300 (epoch 2.68), 44.2 ms
Minibatch loss: 2.561, learning rate: 0.009025
Minibatch error: 1.6%
Validation error: 1.2%
Step 2400 (epoch 2.79), 44.2 ms
Minibatch loss: 2.500, learning rate: 0.009025
Minibatch error: 0.0%
Validation error: 1.3%
Step 2500 (epoch 2.91), 44.0 ms
Minibatch loss: 2.471, learning rate: 0.009025
Minibatch error: 0.0%
Validation error: 1.2%
Step 2600 (epoch 3.03), 43.8 ms
Minibatch loss: 2.451, learning rate: 0.008574
Minibatch error: 0.0%
Validation error: 1.2%
Step 2700 (epoch 3.14), 43.6 ms
Minibatch loss: 2.483, learning rate: 0.008574
Minibatch error: 1.6%
Validation error: 1.1%
Step 2800 (epoch 3.26), 43.7 ms
Minibatch loss: 2.426, learning rate: 0.008574
Minibatch error: 1.6%
Validation error: 1.1%
Step 2900 (epoch 3.37), 44.3 ms
Minibatch loss: 2.449, learning rate: 0.008574
Minibatch error: 3.1%
Validation error: 1.1%
Step 3000 (epoch 3.49), 43.9 ms
Minibatch loss: 2.395, learning rate: 0.008574
Minibatch error: 1.6%
Validation error: 1.0%
Step 3100 (epoch 3.61), 44.1 ms
Minibatch loss: 2.390, learning rate: 0.008574
Minibatch error: 3.1%
Validation error: 1.0%
Step 3200 (epoch 3.72), 43.6 ms
Minibatch loss: 2.330, learning rate: 0.008574
Minibatch error: 0.0%
Validation error: 1.1%
Step 3300 (epoch 3.84), 43.8 ms
Minibatch loss: 2.319, learning rate: 0.008574
Minibatch error: 1.6%
Validation error: 1.1%
Step 3400 (epoch 3.96), 44.4 ms
Minibatch loss: 2.296, learning rate: 0.008574
Minibatch error: 0.0%
Validation error: 1.0%
Step 3500 (epoch 4.07), 44.4 ms
Minibatch loss: 2.273, learning rate: 0.008145
Minibatch error: 0.0%
Validation error: 1.0%
Step 3600 (epoch 4.19), 44.2 ms
Minibatch loss: 2.253, learning rate: 0.008145
Minibatch error: 0.0%
Validation error: 0.9%
Step 3700 (epoch 4.31), 44.4 ms
Minibatch loss: 2.237, learning rate: 0.008145
Minibatch error: 0.0%
Validation error: 1.0%
Step 3800 (epoch 4.42), 43.8 ms
Minibatch loss: 2.234, learning rate: 0.008145
Minibatch error: 1.6%
Validation error: 0.9%
Step 3900 (epoch 4.54), 43.9 ms
Minibatch loss: 2.325, learning rate: 0.008145
Minibatch error: 3.1%
Validation error: 0.9%
Step 4000 (epoch 4.65), 43.6 ms
Minibatch loss: 2.215, learning rate: 0.008145
Minibatch error: 0.0%
Validation error: 1.1%
Step 4100 (epoch 4.77), 43.6 ms
Minibatch loss: 2.209, learning rate: 0.008145
Minibatch error: 1.6%
Validation error: 1.0%
Step 4200 (epoch 4.89), 43.6 ms
Minibatch loss: 2.242, learning rate: 0.008145
Minibatch error: 1.6%
Validation error: 1.0%
Step 4300 (epoch 5.00), 43.5 ms
Minibatch loss: 2.188, learning rate: 0.007738
Minibatch error: 1.6%
Validation error: 0.9%
Step 4400 (epoch 5.12), 43.5 ms
Minibatch loss: 2.155, learning rate: 0.007738
Minibatch error: 3.1%
Validation error: 1.0%
Step 4500 (epoch 5.24), 43.5 ms
Minibatch loss: 2.164, learning rate: 0.007738
Minibatch error: 4.7%
Validation error: 0.9%
Step 4600 (epoch 5.35), 43.5 ms
Minibatch loss: 2.095, learning rate: 0.007738
Minibatch error: 0.0%
Validation error: 0.9%
Step 4700 (epoch 5.47), 43.6 ms
Minibatch loss: 2.062, learning rate: 0.007738
Minibatch error: 0.0%
Validation error: 0.9%
Step 4800 (epoch 5.59), 43.6 ms
Minibatch loss: 2.068, learning rate: 0.007738
Minibatch error: 1.6%
Validation error: 1.0%
Step 4900 (epoch 5.70), 43.6 ms
Minibatch loss: 2.062, learning rate: 0.007738
Minibatch error: 1.6%
Validation error: 1.0%
Step 5000 (epoch 5.82), 43.5 ms
Minibatch loss: 2.148, learning rate: 0.007738
Minibatch error: 3.1%
Validation error: 1.0%
Step 5100 (epoch 5.93), 43.5 ms
Minibatch loss: 2.017, learning rate: 0.007738
Minibatch error: 1.6%
Validation error: 0.9%
Step 5200 (epoch 6.05), 43.5 ms
Minibatch loss: 2.074, learning rate: 0.007351
Minibatch error: 3.1%
Validation error: 1.0%
Step 5300 (epoch 6.17), 43.6 ms
Minibatch loss: 1.983, learning rate: 0.007351
Minibatch error: 0.0%
Validation error: 1.1%
Step 5400 (epoch 6.28), 43.6 ms
Minibatch loss: 1.957, learning rate: 0.007351
Minibatch error: 0.0%
Validation error: 0.8%
Step 5500 (epoch 6.40), 43.5 ms
Minibatch loss: 1.955, learning rate: 0.007351
Minibatch error: 0.0%
Validation error: 0.9%
Step 5600 (epoch 6.52), 43.5 ms
Minibatch loss: 1.926, learning rate: 0.007351
Minibatch error: 0.0%
Validation error: 0.8%
Step 5700 (epoch 6.63), 43.5 ms
Minibatch loss: 1.914, learning rate: 0.007351
Minibatch error: 0.0%
Validation error: 1.0%
Step 5800 (epoch 6.75), 43.6 ms
Minibatch loss: 1.897, learning rate: 0.007351
Minibatch error: 0.0%
Validation error: 0.9%
Step 5900 (epoch 6.87), 43.5 ms
Minibatch loss: 1.887, learning rate: 0.007351
Minibatch error: 0.0%
Validation error: 0.8%
Step 6000 (epoch 6.98), 43.6 ms
Minibatch loss: 1.878, learning rate: 0.007351
Minibatch error: 0.0%
Validation error: 1.0%
Step 6100 (epoch 7.10), 43.5 ms
Minibatch loss: 1.859, learning rate: 0.006983
Minibatch error: 0.0%
Validation error: 0.8%
Step 6200 (epoch 7.21), 43.6 ms
Minibatch loss: 1.844, learning rate: 0.006983
Minibatch error: 0.0%
Validation error: 0.8%
Step 6300 (epoch 7.33), 43.6 ms
Minibatch loss: 1.850, learning rate: 0.006983
Minibatch error: 1.6%
Validation error: 0.9%
Step 6400 (epoch 7.45), 43.6 ms
Minibatch loss: 1.916, learning rate: 0.006983
Minibatch error: 3.1%
Validation error: 0.8%
Step 6500 (epoch 7.56), 43.6 ms
Minibatch loss: 1.808, learning rate: 0.006983
Minibatch error: 0.0%
Validation error: 0.8%
Step 6600 (epoch 7.68), 43.5 ms
Minibatch loss: 1.839, learning rate: 0.006983
Minibatch error: 1.6%
Validation error: 0.9%
Step 6700 (epoch 7.80), 43.6 ms
Minibatch loss: 1.781, learning rate: 0.006983
Minibatch error: 0.0%
Validation error: 0.8%
Step 6800 (epoch 7.91), 43.6 ms
Minibatch loss: 1.773, learning rate: 0.006983
Minibatch error: 0.0%
Validation error: 0.8%
Step 6900 (epoch 8.03), 43.5 ms
Minibatch loss: 1.762, learning rate: 0.006634
Minibatch error: 0.0%
Validation error: 0.9%
Step 7000 (epoch 8.15), 43.5 ms
Minibatch loss: 1.797, learning rate: 0.006634
Minibatch error: 1.6%
Validation error: 0.9%
Step 7100 (epoch 8.26), 43.5 ms
Minibatch loss: 1.741, learning rate: 0.006634
Minibatch error: 0.0%
Validation error: 0.8%
Step 7200 (epoch 8.38), 43.5 ms
Minibatch loss: 1.744, learning rate: 0.006634
Minibatch error: 0.0%
Validation error: 0.9%
Step 7300 (epoch 8.49), 43.6 ms
Minibatch loss: 1.726, learning rate: 0.006634
Minibatch error: 1.6%
Validation error: 0.8%
Step 7400 (epoch 8.61), 43.5 ms
Minibatch loss: 1.704, learning rate: 0.006634
Minibatch error: 0.0%
Validation error: 0.8%
Step 7500 (epoch 8.73), 43.6 ms
Minibatch loss: 1.695, learning rate: 0.006634
Minibatch error: 0.0%
Validation error: 0.8%
Step 7600 (epoch 8.84), 43.5 ms
Minibatch loss: 1.808, learning rate: 0.006634
Minibatch error: 3.1%
Validation error: 0.8%
Step 7700 (epoch 8.96), 43.6 ms
Minibatch loss: 1.667, learning rate: 0.006634
Minibatch error: 0.0%
Validation error: 0.9%
Step 7800 (epoch 9.08), 43.5 ms
Minibatch loss: 1.660, learning rate: 0.006302
Minibatch error: 0.0%
Validation error: 0.9%
Step 7900 (epoch 9.19), 43.6 ms
Minibatch loss: 1.649, learning rate: 0.006302
Minibatch error: 0.0%
Validation error: 0.9%
Step 8000 (epoch 9.31), 43.5 ms
Minibatch loss: 1.666, learning rate: 0.006302
Minibatch error: 0.0%
Validation error: 0.8%
Step 8100 (epoch 9.43), 43.6 ms
Minibatch loss: 1.626, learning rate: 0.006302
Minibatch error: 0.0%
Validation error: 0.8%
Step 8200 (epoch 9.54), 43.5 ms
Minibatch loss: 1.633, learning rate: 0.006302
Minibatch error: 1.6%
Validation error: 0.8%
Step 8300 (epoch 9.66), 43.6 ms
Minibatch loss: 1.616, learning rate: 0.006302
Minibatch error: 0.0%
Validation error: 0.8%
Step 8400 (epoch 9.77), 43.6 ms
Minibatch loss: 1.597, learning rate: 0.006302
Minibatch error: 0.0%
Validation error: 0.8%
Step 8500 (epoch 9.89), 43.5 ms
Minibatch loss: 1.612, learning rate: 0.006302
Minibatch error: 1.6%
Validation error: 0.8%
Test error: 0.8%

Finally Dode!!!

總結(jié)

來來回回折騰了4天。教訓就是一定要根據(jù)官網(wǎng)一步一步來,因為不同版本兼容性不行,所以不要隨意下載其他版本,同時要仔細分析報出的錯誤,再采取下一步行動。

歡迎訪問我的主頁(http://mageek.cn/)

文章版權歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/45512.html

相關文章

  • tensorflow學習筆記1——mac開發(fā)環(huán)境配置

    摘要:模塊中包含著大量的語料庫,可以很方便地完成很多自然語言處理的任務,包括分詞詞性標注命名實體識別及句法分析。導入工具包,下載數(shù)據(jù)源。在終端輸入是第一被添加到核心中的高級別框架,成為的默認。至此開發(fā)環(huán)境配置完畢 1. mac電腦推薦配置 內(nèi)存:8G+cpu:i5+硬盤:SSD 128G+ 本人的電腦配置是cpu:i7, 內(nèi)存:16G,硬盤:SSD 256G 2. mac開發(fā)環(huán)境配置 1.1...

    Muninn 評論0 收藏0
  • 深度學習

    摘要:深度學習在過去的幾年里取得了許多驚人的成果,均與息息相關。機器學習進階筆記之一安裝與入門是基于進行研發(fā)的第二代人工智能學習系統(tǒng),被廣泛用于語音識別或圖像識別等多項機器深度學習領域。零基礎入門深度學習長短時記憶網(wǎng)絡。 多圖|入門必看:萬字長文帶你輕松了解LSTM全貌 作者 | Edwin Chen編譯 | AI100第一次接觸長短期記憶神經(jīng)網(wǎng)絡(LSTM)時,我驚呆了。原來,LSTM是神...

    Vultr 評論0 收藏0

發(fā)表評論

0條評論

最新活動
閱讀需要支付1元查看
<