摘要:的目的是為了提供一個目標檢測學習的平臺。注看一下這篇聯名的機構發布在熱乎乎的還燙手總結這個庫的目的是為了盡可能介紹的關于目標檢測相關的工作。由于還是初學者,所以整理不好不規范的地方,還請大家及時指出。
Object Detection Wiki
Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including image retrieval and video surveillance.
Object Detection
首先,Amusi先安利一個網站,打開下述鏈接后,既可以看到令人熱血沸騰的畫面。
link:
https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
當初看到這個網址,我很驚訝,鏈接上寫的是2015/10/09,我以為是很老的資源,但看到內容后,著實震驚了。該庫在handong大神的個人主頁上,但并沒有Object Detection多帶帶的github庫。受此啟發,我擅自(因為還沒有得到本人同意)將handong大神的Object Detection整理的內容進行精簡和補充(實在班門弄斧了)。于是創建了一個名為awesome-object-detection的github庫。
Awesome-Object-Detection
接下來,重點介紹一下這個“很copy”的庫。awesome-object-detection的目的是為了提供一個目標檢測(Object Detection)學習的平臺。特點是:介紹的paper和的code(盡量更新!)由于Amusi還是初學者,目前還沒有辦法對每個paper進行介紹,但后續會推出paper精講的內容,也歡迎大家star,fork并pull自己所關注到object detection的工作。
那來看看目前,awesome-object-detection里有哪些干貨吧~
為了節省篇幅,這里只介紹較為重要的工作:
R-CNN三件套(R-CNN Fast R-CNN和Faster R-CNN)
Light-Head R-CNN
Cascade R-CNN
YOLO三件套(YOLOv1 YOLOv2 YOLOv3)
SSD(SSD DSSD FSSD ESSD Pelee)
R-FCN
FPN
DSOD
RetinaNet
DetNet
...
大家對常見的R-CNN系列和YOLO系列一定很熟悉了,這里Amusi也不想重復,因為顯得沒有逼格~這里主要簡單推薦兩篇paper,來凸顯一下awesome-object-detection的意義。
Pelee
《Pelee: A Real-Time Object Detection System on Mobile Devices》
intro: (ICLR 2018 workshop track)
arxiv: https://arxiv.org/abs/1804.06882
github: https://github.com/Robert-JunWang/Pelee
Abstract:An increasing need of running Convolutional Neural Network (CNN) models on mobile devices with limited computing power and memory resource encourages studies on efficient model design. A number of efficient architectures have been proposed in recent years, for example, MobileNet, ShuffleNet, and NASNet-A. However, all these models are heavily dependent on depthwise separable convolution which lacks efficient implementation in most deep learning frameworks. In this study, we propose an efficient architecture named PeleeNet, which is built with conventional convolution instead. On ImageNet ILSVRC 2012 dataset, our proposed PeleeNet achieves a higher accuracy by 0.6% (71.3% vs. 70.7%) and 11% lower computational cost than MobileNet, the state-of-the-art efficient architecture. Meanwhile, PeleeNet is only 66% of the model size of MobileNet. We then propose a real-time object detection system by combining PeleeNet with Single Shot MultiBox Detector (SSD) method and optimizing the architecture for fast speed. Our proposed detection system, named Pelee, achieves 76.4% mAP (mean average precision) on PASCAL VOC2007 and 22.4 mAP on MS COCO dataset at the speed of 17.1 FPS on iPhone 6s and 23.6 FPS on iPhone 8. The result on COCO outperforms YOLOv2 in consideration of a higher precision, 13.6 times lower computational cost and 11.3 times smaller model size. The code and models are open sourced.
Quantization Mimic
《Quantization Mimic: Towards Very Tiny CNN for Object Detection》
Tsinghua University1 & The Chinese University of Hong Kong2 &SenseTime3
arxiv: https://arxiv.org/abs/1805.02152
注:看一下這篇paper聯名的機構......2018-05-06發布在arXiv(熱乎乎的還燙手)
Abstract:In this paper, we propose a simple and general framework for training very tiny CNNs for object detection. Due to limited representation ability, it is challenging to train very tiny networks for complicated tasks like detection. To the best of our knowledge, our method, called Quantization Mimic, is the first one focusing on very tiny networks. We utilize two types of acceleration methods: mimic and quantization. Mimic improves the performance of a student network by transfering knowledge from a teacher network. Quantization converts a full-precision network to a quantized one without large degradation of performance. If the teacher network is quantized, the search scope of the student network will be smaller. Using this property of quantization, we propose Quantization Mimic. It first quantizes the large network, then mimic a quantized small network. We suggest the operation of quantization can help student network to match the feature maps from teacher network. To evaluate the generalization of our hypothesis, we carry out experiments on various popular CNNs including VGG and Resnet, as well as different detection frameworks including Faster R-CNN and R-FCN. Experiments on Pascal VOC and WIDER FACE verify our Quantization Mimic algorithm can be applied on various settings and outperforms state-of-the-art model acceleration methods given limited computing resouces.
總結
awesome-object-detection這個庫的目的是為了盡可能介紹的關于目標檢測(Object Detection)相關的工作(paper and code)。由于Amusi還是初學者,所以整理不好/不規范的地方,還請大家及時指出。因為該庫直接copy了handong大神的內容,所以如果有版權侵犯,我會立即刪除/修改(正在聯系handong大神ing)。
歡迎加入本站公開興趣群商業智能與數據分析群
興趣范圍包括各種讓數據產生價值的辦法,實際應用案例分享與討論,分析工具,ETL工具,數據倉庫,數據挖掘工具,報表系統等全方位知識
QQ群:81035754
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/4757.html
摘要:基于候選區域的目標檢測器滑動窗口檢測器自從獲得挑戰賽冠軍后,用進行分類成為主流。一種用于目標檢測的暴力方法是從左到右從上到下滑動窗口,利用分類識別目標。這些錨點是精心挑選的,因此它們是多樣的,且覆蓋具有不同比例和寬高比的現實目標。 目標檢測是很多計算機視覺任務的基礎,不論我們需要實現圖像與文字的交互還是需要識別精細類別,它都提供了可靠的信息。本文對目標檢測進行了整體回顧,第一部分從RCNN...
摘要:昨天,研究院開源了,業內較佳水平的目標檢測平臺。項目地址是實現頂尖目標檢測算法包括的軟件系統。因此基本上已經是最目前包含最全與最多目標檢測算法的代碼庫了。 昨天,Facebook AI 研究院(FAIR)開源了 Detectron,業內較佳水平的目標檢測平臺。據介紹,該項目自 2016 年 7 月啟動,構建于 Caffe2 之上,目前支持大量機器學習算法,其中包括 Mask R-CNN(何愷...
摘要:值得一提的是每篇文章都是我用心整理的,編者一貫堅持使用通俗形象的語言給我的讀者朋友們講解機器學習深度學習的各個知識點。今天,紅色石頭特此將以前所有的原創文章整理出來,組成一個比較合理完整的機器學習深度學習的學習路線圖,希望能夠幫助到大家。 一年多來,公眾號【AI有道】已經發布了 140+ 的原創文章了。內容涉及林軒田機器學習課程筆記、吳恩達 deeplearning.ai 課程筆記、機...
摘要:近日,外媒刊登了一篇機器學習與網絡安全相關的資料大匯總,文中列出了相關數據源的獲取途徑,優秀的論文和書籍,以及豐富的教程。這個視頻介紹了如何將機器學習應用于網絡安全探測,時長約小時。 近日,外媒 KDnuggets 刊登了一篇機器學習與網絡安全相關的資料大匯總,文中列出了相關數據源的獲取途徑,優秀的論文和書籍,以及豐富的教程。大部分都是作者在日常工作和學習中親自使用并認為值得安利的純干貨。數...
閱讀 2016·2021-09-13 10:23
閱讀 2348·2021-09-02 09:47
閱讀 3806·2021-08-16 11:01
閱讀 1227·2021-07-25 21:37
閱讀 1609·2019-08-30 15:56
閱讀 543·2019-08-30 13:52
閱讀 3138·2019-08-26 10:17
閱讀 2455·2019-08-23 18:17