摘要:雙棧法四則運算括號復雜度時間空間思路算符優先算法,核心維護兩個棧,一個操作數棧,一個操作符棧。
Basic Calculator 2
雙棧法 ( 四則運算 + 括號 ) 復雜度Implement a basic calculator to evaluate a simple expression string.
The expression string contains only non-negative integers, +, -, *, / operators and empty spaces .
The integer division should truncate toward zero.You may assume that the given expression is always valid.
Some examples: "3+2*2" = 7 " 3/2 " = 1 " 3+5 / 2 " = 5
Note: Do not use the eval built-in library function.
時間 O(N) 空間 O(N)
思路算符優先算法,核心維護兩個棧,一個操作數棧,一個操作符棧。
先把輸入tokenize一下,把操作數和操作符分開,注意操作數有可能是多位的如256
依次讀取每個token,兩種情況:
1.是數字,壓入操作數棧
2.是操作符,四種情況:
(1). 當前是加減法,棧頂是加減乘除,則計算棧內直到操作符棧頂不是加減乘除或為空,壓棧;否則直接壓棧
(2). 當前是乘除法,棧頂是乘除,計算直到操作符棧頂不是乘除或為空,壓棧;否則直接壓棧
(3). 當前是左括號,直接壓棧
(4). 當前是右括號,計算直到遇到左括號
當所有token分析完后,循環計算棧頂直到符號棧為空,此時操作數棧里應只有一個元素,也即是最后的結果
先tokenize,不要把字符串處理和計算混在一起,容易思路混亂
模塊化:
tokenize方法把string轉化成token的list
ArrayList
計算棧頂
void popAndCal(Stack
計算函數
int exe(int n1, int n2, char op)
public class Solution { public int calculate(String s) { ArrayList臨時變量法 ( 四則運算不帶括號 ) 復雜度tokens = tokenize(s); Stack operators = new Stack (); Stack operands = new Stack (); for (int i = 0; i < tokens.size(); i++) { String token = tokens.get(i); //if token is number if (isNumber(token)) operands.push(Integer.valueOf(token)); //is operators: (,),+,-,*,/ else { Character cur = token.charAt(0);//convert string to char for operator if (operators.isEmpty()) { operators.push(cur); } else if (cur == "(") { operators.push(cur); } else if (cur == ")") { while (operators.peek() != "(") { popAndCal(operators, operands); } operators.pop(); } else if (cur == "+" || cur == "-") { char top = operators.peek(); while (top == "+" || top == "-" || top == "*" || top == "/" ) { popAndCal(operators, operands); top = operators.isEmpty() ? " " : operators.peek(); } operators.push(cur); } else if (cur == "*" || cur == "/") { char top = operators.peek(); while (top == "*" || top == "/" ) { popAndCal(operators, operands); top = operators.isEmpty() ? " " : operators.peek(); } operators.push(cur); } } } while (!operators.isEmpty()) { popAndCal(operators, operands); } return operands.pop(); } public boolean isNumber(String s) { if (s.charAt(0) <= "9" && s.charAt(0) >= "0") return true; return false; } public ArrayList tokenize(String s) { ArrayList result = new ArrayList (); StringBuilder sb = new StringBuilder(); for (int i = 0; i < s.length();) { if (s.charAt(i) == " ") { i++; continue; } else if (!Character.isDigit(s.charAt(i))) { result.add(String.valueOf(s.charAt(i++))); } else { sb = new StringBuilder(); while (i < s.length() && Character.isDigit(s.charAt(i))) { sb.append(s.charAt(i)); i++; } result.add(sb.toString()); } } return result; } public void popAndCal(Stack operators, Stack operands) { int num2 = operands.pop(); int num1 = operands.pop(); char opr = operators.pop(); operands.push(exe(num1, num2, opr)); } public int exe(int n1, int n2, char op) { int result = 0; if (op == "+") { result = n1 + n2; } else if (op == "-") { result = n1 - n2; } else if (op == "*") { result = n1 * n2; } else if (op == "/") { result = n1 / n2; } return result; } }
時間 O(N) 空間 O(1)
思路Expression Add Operators的方法
這題考察的核心是在1+2*3這種,要先算后面的乘法
在1+2的時候,我們要留心后面會出現乘法,所以在計算當前結果的同時(eval=1+2=3),要把toSubtract(算到1+2的時候toSubtract是2,eval是3)記錄下來傳給后面以便出現乘法可以利用。
那么這個toSubtract什么意思呢,就是如果后面出現了乘法,我可以用eval-toSubtract這樣來還原乘法發生之前的樣子(3-2=1),用這個數(1)加上我的乘法(2*3),即1+(2*3)=7,記錄eval=7,表示當前(算到乘以3了)的值,然后把這個乘積(2*3)記為toSubtract
為什么?因為后面如果再出現一個乘以四,即:1+2*3*4,toSubtract應該是2*3=6,這樣可以eval-toSubtract = 7 - 6=1還原乘法之前,1再加上toSubtract(為當前的累積=2*3=6)乘以當前數(4)最后得出1+24=25.
總結:
eval為當前表達式的值,不管后面是什么
toSubtract為提防后面有乘法預留的過程數,他的取值分為兩種情況:
做完加法例如1+2,更新toSub為2;做完減法例如1-2,更新toSub為-2,即加減法toSub為最新的加數/減數;
做完乘法例如1*2,更新toSub為1*2,因為后面如果還有乘法的話要一口氣減掉1*2;再例如,1*2*3*4*5,此時toSubtract為1*2*3*4*5
注意 代碼public int calculate(String s) { ArrayListtokens = tokenize(s); int toSubtract = 0; int eval = 0; char operation = "+"; for (String token : tokens) { if (isNumber(token)) { int n = Integer.valueOf(token); if (operation == "+") { eval = eval + n; toSubtract = n; } else if (operation == "-") { eval = eval - n; toSubtract = -1 * n; } else if (operation == "*") { eval = eval - toSubtract + toSubtract * n; toSubtract = toSubtract * n; } else if (operation == "/") { eval = eval - toSubtract + toSubtract / n; toSubtract = toSubtract / n; } } else operation = token.charAt(0); } return eval; }
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/64786.html
Problem Implement a basic calculator to evaluate a simple expression string. The expression string may contain open ( and closing parentheses ), the plus + or minus sign -, non-negative integers and e...
摘要:復雜度思路將字符串先轉換成后綴表達式,再將其出來。 Leetcode[224] Basic Calculator Implement a basic calculator to evaluate a simple expression string. The expression string may contain open ( and closing parentheses ),...
摘要:復雜度思路用兩個來分別記錄當前的結果和操作符注意每一次統計當前的的時候,要看一下下一位的操作符。有一種的方法,是表示的是匹配任意的空白符,包括空格,制表符,換行符,中文全角空格等。也可以用更簡單的方法,。 LeetCode[227] Basic Calculator II Implement a basic calculator to evaluate a simple expres...
Problem Implement a basic calculator to evaluate a simple expression string. The expression string contains only non-negative integers, +, -, *, / operators and empty spaces . The integer division sho...
Problem Implement a basic calculator to evaluate a simple expression string. The expression string may contain open ( and closing parentheses ), the plus + or minus sign -, non-negative integers and e...
閱讀 1535·2021-09-22 15:35
閱讀 2014·2021-09-14 18:04
閱讀 884·2019-08-30 15:55
閱讀 2457·2019-08-30 15:53
閱讀 2685·2019-08-30 12:45
閱讀 1209·2019-08-29 17:01
閱讀 2584·2019-08-29 15:30
閱讀 3521·2019-08-29 15:09