国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

[LintCode] Backpack I II III IV V VI [背包六問]

sutaking / 1114人閱讀

摘要:單次選擇最大體積動規經典題目,用數組表示書包空間為的時候能裝的物品最大容量。注意的空間要給,因為我們要求的是第個值,否則會拋出。依然是以背包空間為限制條件,所不同的是取的是價值較大值,而非體積較大值。

Backpack I Problem 單次選擇+最大體積

Given n items with size Ai, an integer m denotes the size of a backpack. How full you can fill this backpack?

Notice

You can not divide any item into small pieces.

Example

If we have 4 items with size [2, 3, 5, 7], the backpack size is 11, we can select [2, 3, 5], so that the max size we can fill this backpack is 10. If the backpack size is 12. we can select [2, 3, 7] so that we can fulfill the backpack.

You function should return the max size we can fill in the given backpack.

Challenge

O(n x m) time and O(m) memory.

O(n x m) memory is also acceptable if you do not know how to optimize memory.

Note

動規經典題目,用數組dp[i]表示書包空間為i的時候能裝的A物品最大容量。兩次循環,外部遍歷數組A,內部反向遍歷數組dp,若j即背包容量大于等于物品體積A[i],則取前i-1次循環求得的最大容量dp[j],和背包體積為j-A[i]時的最大容量dp[j-A[i]]與第i個物品體積A[i]之和即dp[j-A[i]]+A[i]的較大值,作為本次循環后的最大容量dp[i]。

注意dp[]的空間要給m+1,因為我們要求的是第m+1個值dp[m],否則會拋出OutOfBoundException。

Solution
public class Solution {
    public int backPack(int m, int[] A) {
        int[] dp = new int[m+1];
        for (int i = 0; i < A.length; i++) {
            for (int j = m; j > 0; j--) {
                if (j >= A[i]) {
                    dp[j] = Math.max(dp[j], dp[j-A[i]] + A[i]);
                }
            }
        }
        return dp[m];
    }
}
Backpack II Problem 單次選擇+最大價值

Given n items with size A[i] and value V[i], and a backpack with size m. What"s the maximum value can you put into the backpack?

Notice

You cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.

Example

Given 4 items with size [2, 3, 5, 7] and value [1, 5, 2, 4], and a backpack with size 10. The maximum value is 9.

Challenge

O(n x m) memory is acceptable, can you do it in O(m) memory?

Note

和BackPack I基本一致。依然是以背包空間為限制條件,所不同的是dp[j]取的是價值較大值,而非體積較大值。所以只要把dp[j-A[i]]+A[i]換成dp[j-A[i]]+V[i]就可以了。

Solution
public class Solution {
    public int backPackII(int m, int[] A, int V[]) {
        int[] dp = new int[m+1];
        for (int i = 0; i < A.length; i++) {
            for (int j = m; j > 0; j--) {
                if (j >= A[i]) dp[j] = Math.max(dp[j], dp[j-A[i]]+V[i]);
            }
        }
        return dp[m];
    }
}
Backpack III Problem 重復選擇+最大價值

Given n kind of items with size Ai and value Vi( each item has an infinite number available) and a backpack with size m. What"s the maximum value can you put into the backpack?

Notice

You cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.

Example

Given 4 items with size [2, 3, 5, 7] and value [1, 5, 2, 4], and a backpack with size 10. The maximum value is 15.

Solution
public class Solution {
    public int backPackIII(int[] A, int[] V, int m) {
        int[] dp = new int[m+1];
        for (int i = 0; i < A.length; i++) {
            for (int j = 1; j <= m; j++) {
                if (j >= A[i]) dp[j] = Math.max(dp[j], dp[j-A[i]]+V[i]);
            }
        }
        return dp[m];
    }
}
Backpack IV Problem 重復選擇+唯一排列+裝滿可能性總數

Given n items with size nums[i] which an integer array and all positive numbers, no duplicates. An integer target denotes the size of a backpack. Find the number of possible fill the backpack.

Each item may be chosen unlimited number of times

Example

Given candidate items [2,3,6,7] and target 7,

A solution set is:

[7]
[2, 2, 3]
return 2
Solution
public class Solution {
    public int backPackIV(int[] nums, int target) {
        int[] dp = new int[target+1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = 1; j <= target; j++) {
                if (nums[i] == j) dp[j]++;
                else if (nums[i] < j) dp[j] += dp[j-nums[i]];
            }
        }
        return dp[target];
    }
}
Backpack V Problem 單次選擇+裝滿可能性總數

Given n items with size nums[i] which an integer array and all positive numbers. An integer target denotes the size of a backpack. Find the number of possible fill the backpack.

Each item may only be used once

Example

Given candidate items [1,2,3,3,7] and target 7,

A solution set is:

[7]
[1, 3, 3]
return 2
Solution
public class Solution {
    public int backPackV(int[] nums, int target) {
        int[] dp = new int[target+1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = target; j >= 0; j--) {
                if (j >= nums[i]) dp[j] += dp[j-nums[i]];
            }
        }
        return dp[target];
    }
}
Backpack VI aka: Combination Sum IV Problem 重復選擇+不同排列+裝滿可能性總數

Given an integer array nums with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Notice

The different sequences are counted as different combinations.

Example

Given nums = [1, 2, 4], target = 4

The possible combination ways are:

[1, 1, 1, 1]
[1, 1, 2]
[1, 2, 1]
[2, 1, 1]
[2, 2]
[4]
return 6
Solution
public class Solution {
    public int backPackVI(int[] nums, int target) {
        int[] dp = new int[target+1];
        dp[0] = 1;
        for (int i = 1; i <= target; i++) {
            for (int num: nums) {
                if (num <= i) dp[i] += dp[i-num];
            }
        }
        return dp[target];
    }
}

文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。

轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/65054.html

相關文章

  • [LintCode] Backpack I & II

    摘要:動規經典題目,用數組表示書包空間為的時候能裝的物品最大容量。注意的空間要給,因為我們要求的是第個值,否則會拋出。依然是以背包空間為限制條件,所不同的是取的是價值較大值,而非體積較大值。 Backpack Problem Given n items with size Ai, an integer m denotes the size of a backpack. How full yo...

    atinosun 評論0 收藏0
  • LeetCode12.整數轉羅馬數字 JavaScript

    摘要:整數轉羅馬數字羅馬數字包含以下七種字符,,,,,和。字符數值例如,羅馬數字寫做,即為兩個并列的。通常情況下,羅馬數字中小的數字在大的數字的右邊。同樣地,數字表示為。給定一個整數,將其轉為羅馬數字。 LeetCode12.整數轉羅馬數字 JavaScript 羅馬數字包含以下七種字符:I, V, X, L,C,D 和 M。 字符 數值 I 1 V...

    Tangpj 評論0 收藏0
  • 新上課程推薦:TypeScript完全解讀(總26課時)

    摘要:本套課程包含兩大部分,第一部分是基礎部分,也是重要部分,參考官方文檔結構,針對內容之間的關聯性和前后順序進行合理調整。 showImg(https://segmentfault.com/img/bVbpBA0?w=1460&h=400); 講師簡介: iview 核心開發者,iview-admin 作者,百萬級虛擬渲染表格組件 vue-bigdata-table 作者。目前就職于知名互...

    caozhijian 評論0 收藏0
  • [LintCode/LeetCode] Combination Sum I & II

    摘要:和唯一的不同是組合中不能存在重復的元素,因此,在遞歸時將初始位即可。 Combination Sum I Problem Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T...

    ThreeWords 評論0 收藏0
  • LeetCode13.羅馬數字轉整數 JavaScript

    摘要:羅馬數字轉整數羅馬數字包含以下七種字符,,,,,和。字符數值例如,羅馬數字寫做,即為兩個并列的。通常情況下,羅馬數字中小的數字在大的數字的右邊。同樣地,數字表示為。給定一個羅馬數字,將其轉換成整數。 LeetCode13.羅馬數字轉整數 JavaScript 羅馬數字包含以下七種字符: ·I, V, X, L,C,D 和 M。 字符 數值 I ...

    RobinQu 評論0 收藏0

發表評論

0條評論

最新活動
閱讀需要支付1元查看
<