摘要:不同數(shù)包含重復(fù)數(shù)為的時(shí)候,表示在外層的循環(huán)正在被使用,所以當(dāng)前循環(huán)遇到為一定要跳過。對當(dāng)前循環(huán)要添加的數(shù)組,在添加當(dāng)前元素后進(jìn)行遞歸,遞歸之后要將當(dāng)前元素的使用標(biāo)記改為,表示已經(jīng)使用和遞歸完畢,然后再將這個(gè)元素從的末位刪除。
Subsets Problem
Given a set of distinct integers, nums, return all possible subsets.
Note: The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,3], a solution is:
[ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]Solution
public class Solution { public ListSubsets II Problem> subsets(int[] nums) { List
> res = new ArrayList<>(); if (nums == null || nums.length == 0) return res; Arrays.sort(nums); helper(nums, res, new ArrayList
(), 0); return res; } public void helper(int[] nums, List > res, List
cur, int start) { res.add(new ArrayList (cur)); for (int i = start; i < nums.length; i++) { cur.add(nums[i]); helper(nums, res, cur, i+1); cur.remove(cur.size()-1); } } }
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note: The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,2], a solution is:
[ [2], [1], [1,2,2], [2,2], [1,2], [] ]Solution
public class Solution { public ListPermutations (不同數(shù)) Problem> subsetsWithDup(int[] nums) { List
> res = new ArrayList<>(); if (nums == null || nums.length == 0) return res; Arrays.sort(nums); helper(nums, new ArrayList
(), res, 0); return res; } public void helper(int[] nums, List cur, List > res, int start) { res.add(new ArrayList
(cur)); for (int i = start; i < nums.length; i++) { if (i > start && nums[i] == nums[i-1]) continue; cur.add(nums[i]); helper(nums, cur, res, i+1); cur.remove(cur.size()-1); } } }
Given a collection of distinct numbers, return all possible permutations.
For example,
[1,2,3] have the following permutations:
[ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]Solution
public class Solution { public ListPermutations II (包含重復(fù)數(shù)) Problem> permute(int[] nums) { List
> res = new ArrayList<>(); if (nums == null || nums.length == 0) return res; helper(nums, new ArrayList
(), res); return res; } public void helper(int[] nums, List cur, List > res) { if (cur.size() == nums.length) res.add(new ArrayList
(cur)); else for (int i = 0; i < nums.length; i++) { if (cur.contains(nums[i])) continue; cur.add(nums[i]); helper(nums, cur, res); cur.remove(cur.size()-1); } } }
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
For example,
[1,1,2] have the following unique permutations:
[
[1,1,2],
[1,2,1],
[2,1,1]
]
used[i]為true的時(shí)候,表示在外層的循環(huán)正在被使用,所以當(dāng)前循環(huán)遇到used[i]為true一定要跳過。
對當(dāng)前循環(huán)要添加的數(shù)組cur,在添加當(dāng)前元素后進(jìn)行遞歸,遞歸之后要將當(dāng)前元素nums[i]的使用標(biāo)記used[i]改為false,表示已經(jīng)使用和遞歸完畢,然后再將這個(gè)元素從cur的末位刪除。
public class Solution { public ListCombination Sum Problem> permuteUnique(int[] nums) { List
> res = new ArrayList<>(); if (nums == null || nums.length == 0) return res; Arrays.sort(nums); helper(nums, new ArrayList
(), res, new boolean[nums.length]); return res; } public void helper(int[] nums, List cur, List > res, boolean[] used) { if (cur.size() == nums.length) { res.add(new ArrayList
(cur)); return; } for (int i = 0; i < nums.length; i++) { if (used[i] || (i != 0 && nums[i] == nums[i-1] && !used[i-1])) continue; else { used[i] = true; cur.add(nums[i]); helper(nums, cur, res, used); used[i] = false; cur.remove(cur.size()-1); } } } }
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,
A solution set is:
[ [7], [2, 2, 3] ]Solution
public class Solution { public ListCombination Sum II Problem> combinationSum(int[] A, int target) { List
> res = new ArrayList<>(); if (A == null || A.length == 0) return res; Arrays.sort(A); helper(A, new ArrayList
(), res, target, 0); return res; } public void helper(int[] A, List cur, List > res, int target, int start) { if (target == 0) res.add(new ArrayList<>(cur)); if (target < 0) return; for (int i = start; i < A.length; i++) { cur.add(A[i]); helper(A, cur, res, target-A[i], i); cur.remove(cur.size()-1); } } }
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8,
A solution set is:
[ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ]Solution
public class Solution { public ListCombination Sum III Problem> combinationSum2(int[] A, int target) { List
> res = new ArrayList<>(); if (A == null || A.length == 0) return res; Arrays.sort(A); helper(A, new ArrayList<>(), res, target, 0); return res; } public void helper(int[] A, List
cur, List > res, int target, int start) { if (target == 0) { res.add(new ArrayList
(cur)); return; } if (target < 0) return; for (int i = start; i < A.length; i++) { if (i != start && A[i] == A[i-1]) continue; cur.add(A[i]); helper(A, cur, res, target-A[i], i+1); cur.remove(cur.size()-1); } } }
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Example 1:
Input: k = 3, n = 7
Output:
[[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]Solution
public class Solution { public List> combinationSum3(int k, int n) { List
> res = new ArrayList<>(); helper(k, n, new ArrayList<>(), res, 1); return res; } public void helper(int k, int n, List
cur, List > res, int start) { if (n < 0) return; if (k == 0 && n == 0) res.add(new ArrayList<>(cur)); for (int i = start; i <= 9; i++) { cur.add(i); helper(k-1, n-i, cur, res, i+1); cur.remove(cur.size()-1); } } }
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/66091.html
摘要:回溯算法在算法過程中就是類似于枚舉算法,嘗試在搜索過程中找到問題的解。 回溯算法( BackTrack )在算法過程中就是類似于枚舉算法,嘗試在搜索過程中找到問題的解。 使用回溯算法解題的一般步驟 使用回溯算法解題的一般步驟: 針對所給問題得出一般的解空間 用回溯搜索方法搜索解空間 使用深度優(yōu)先去搜索所有解并包含適當(dāng)?shù)募糁Σ僮? LeetCode 使用回溯算法的題目主要有 36 題,...
摘要:題目給定一組不含重復(fù)元素的整數(shù)數(shù)組,返回該數(shù)組所有可能的子集冪集。說明解集不能包含重復(fù)的子集。示例輸入輸出題解全排列,部分排列這些問題都是回溯的題目。這個(gè)題目每個(gè)狀態(tài)都是解,包括空也是解,所以直接都加進(jìn)去就好。 題目 給定一組不含重復(fù)元素的整數(shù)數(shù)組 nums,返回該數(shù)組所有可能的子集(冪集)。 說明:解集不能包含重復(fù)的子集。 示例: 輸入: nums = [1,2,3] 輸出: [ ...
摘要:題目給定一組不含重復(fù)元素的整數(shù)數(shù)組,返回該數(shù)組所有可能的子集冪集。說明解集不能包含重復(fù)的子集。示例輸入輸出題解全排列,部分排列這些問題都是回溯的題目。這個(gè)題目每個(gè)狀態(tài)都是解,包括空也是解,所以直接都加進(jìn)去就好。 題目 給定一組不含重復(fù)元素的整數(shù)數(shù)組 nums,返回該數(shù)組所有可能的子集(冪集)。 說明:解集不能包含重復(fù)的子集。 示例: 輸入: nums = [1,2,3] 輸出: [ ...
摘要:寫這個(gè)系列是因?yàn)榧o(jì)念一下去年的今天,就是年的月號,刷題第一天,今天是一周年紀(jì)念日。排除,就是返回一空的。復(fù)雜度分析算法課講過,這個(gè)復(fù)雜度是指數(shù)次,能實(shí)現(xiàn)出來就行了,沒法優(yōu)化。復(fù)雜度分析不分析了,反正指數(shù)次。 Subsets 寫這個(gè)系列是因?yàn)榧o(jì)念一下去年的今天,就是2015年的9月14號,刷題第一天,今天是一周年紀(jì)念日。當(dāng)時(shí)只敢做easy還得抄答案的我想啥時(shí)候能做上medium啊,事到如...
Subsets Problem Given a set of distinct integers, return all possible subsets. Notice Elements in a subset must be in non-descending order.The solution set must not contain duplicate subsets. Example ...
閱讀 1527·2021-11-25 09:43
閱讀 4070·2021-11-15 11:37
閱讀 3201·2021-08-17 10:13
閱讀 3509·2019-08-30 14:16
閱讀 3540·2019-08-26 18:37
閱讀 2499·2019-08-26 11:56
閱讀 1139·2019-08-26 10:42
閱讀 617·2019-08-26 10:39