摘要:堆中位置的結(jié)點(diǎn)的父節(jié)點(diǎn)的位置為,子節(jié)點(diǎn)的位置分別是和一個(gè)結(jié)論一棵大小為的完全二叉樹的高度為用數(shù)組堆實(shí)現(xiàn)的完全二叉樹是很嚴(yán)格的,但它的靈活性足以使我們高效地實(shí)現(xiàn)優(yōu)先隊(duì)列。
Algorithms Fourth Edition
Written By Robert Sedgewick & Kevin Wayne
Translated By 謝路云
Chapter 2 Section 4 優(yōu)先隊(duì)列
定義:當(dāng)一棵二叉樹的每個(gè)結(jié)點(diǎn)都大于等于它的兩個(gè)子節(jié)點(diǎn)時(shí),它稱為堆有序
相應(yīng)地,在堆有序的二叉樹中,每個(gè)結(jié)點(diǎn)都小于等于它的父節(jié)點(diǎn)。從任意結(jié)點(diǎn)向上,我們都能得到一列非遞減的元素;從任意結(jié)點(diǎn)向下,我們都能得到一列非遞增的元素。特別的: 根結(jié)點(diǎn)是堆有序的二叉樹中的最大結(jié)點(diǎn)。
二叉堆表示法二叉堆:就是堆有序的完全二叉樹,元素在數(shù)組中按照層級存儲(chǔ)(一層一層的放入數(shù)組中,不用數(shù)組的第一個(gè)元素,因?yàn)?*2=0,遞推關(guān)系不合適)。下面簡稱堆。
堆中:位置K的結(jié)點(diǎn)的父節(jié)點(diǎn)的位置為 ?k/2? ,子節(jié)點(diǎn)的位置分別是 2k 和 2k+1
一個(gè)結(jié)論:一棵大小為N的完全二叉樹的高度為 ?lgN?
用數(shù)組(堆)實(shí)現(xiàn)的完全二叉樹是很嚴(yán)格的,但它的靈活性足以使我們高效地實(shí)現(xiàn)優(yōu)先隊(duì)列。
堆的算法我們用數(shù)組pq[N+1]來表示大小為N的堆,我們不使用pq[0]。
上浮(由下至上的堆有序)private void swim(int k) { while (k > 1 && less(k / 2, k)) { exch(k / 2, k); k = k / 2; } }下沉(由上至下的堆有序)
private void sink(int k) { while (2 * k <= N) { int j = 2 * k; if (j < N && less(j, j + 1)) j++; //找到子節(jié)點(diǎn)中更大的那個(gè) if (!less(k, j)) break; //如果父結(jié)點(diǎn)比較大,則終止 exch(k, j);//如果父結(jié)點(diǎn)比較小,則把子節(jié)點(diǎn)中更大的那個(gè)jiaohuanshanglai k = j; } }MaxPQ 代碼
復(fù)雜度
插入:不超過lgN+1次比較
刪除最大元素:不超過2lgN次比較
簡易版
public class MaxPQ> { private Key[] pq; // heap-ordered complete binary tree private int N = 0; // in pq[1..N] with pq[0] unused public MaxPQ(int maxN) { pq = (Key[]) new Comparable[maxN + 1]; } public boolean isEmpty() { return N == 0; } public int size() { return N; } public void insert(Key v) { pq[++N] = v; //添加到最后 swim(N); //上浮 } public Key delMax() { Key max = pq[1]; // Retrieve max key from top.最大的為根結(jié)點(diǎn) exch(1, N--); // Exchange with last item.和最后一個(gè)結(jié)點(diǎn)交換,并減小N pq[N + 1] = null; // Avoid loitering.刪除原來的最后一位 sink(1); // Restore heap property.下沉 return max; } // See above private boolean less(int i, int j) private void exch(int i, int j) private void swim(int k) private void sink(int k) }
完整版
添加resize功能
public class MaxPQ索引優(yōu)先隊(duì)列implements Iterable { private Key[] pq; // store items at indices 1 to N private int N; // number of items on priority queue private Comparator comparator; // optional Comparator public MaxPQ(int initCapacity) { pq = (Key[]) new Object[initCapacity + 1]; N = 0; } public MaxPQ() { this(1); } public MaxPQ(int initCapacity, Comparator comparator) { this.comparator = comparator; pq = (Key[]) new Object[initCapacity + 1]; N = 0; } public MaxPQ(Comparator comparator) { this(1, comparator); } public MaxPQ(Key[] keys) { N = keys.length; pq = (Key[]) new Object[keys.length + 1]; for (int i = 0; i < N; i++) pq[i+1] = keys[i]; for (int k = N/2; k >= 1; k--) sink(k); assert isMaxHeap(); } public boolean isEmpty() { return N == 0; } public int size() { return N; } public Key max() { if (isEmpty()) throw new NoSuchElementException("Priority queue underflow"); return pq[1]; } // helper function to double the size of the heap array private void resize(int capacity) { assert capacity > N; Key[] temp = (Key[]) new Object[capacity]; for (int i = 1; i <= N; i++) { temp[i] = pq[i]; } pq = temp; } public void insert(Key x) { // double size of array if necessary if (N >= pq.length - 1) resize(2 * pq.length); // add x, and percolate it up to maintain heap invariant pq[++N] = x; swim(N); assert isMaxHeap(); } public Key delMax() { if (isEmpty()) throw new NoSuchElementException("Priority queue underflow"); Key max = pq[1]; exch(1, N--); sink(1); pq[N+1] = null; // to avoid loiterig and help with garbage collection if ((N > 0) && (N == (pq.length - 1) / 4)) resize(pq.length / 2); assert isMaxHeap(); return max; } private void swim(int k) { while (k > 1 && less(k/2, k)) { exch(k, k/2); k = k/2; } } private void sink(int k) { while (2*k <= N) { int j = 2*k; if (j < N && less(j, j+1)) j++; if (!less(k, j)) break; exch(k, j); k = j; } } private boolean less(int i, int j) { if (comparator == null) { return ((Comparable ) pq[i]).compareTo(pq[j]) < 0; } else { return comparator.compare(pq[i], pq[j]) < 0; } } private void exch(int i, int j) { Key swap = pq[i]; pq[i] = pq[j]; pq[j] = swap; } // is pq[1..N] a max heap? private boolean isMaxHeap() { return isMaxHeap(1); } // is subtree of pq[1..N] rooted at k a max heap? private boolean isMaxHeap(int k) { if (k > N) return true; int left = 2*k, right = 2*k + 1; if (left <= N && less(k, left)) return false; if (right <= N && less(k, right)) return false; return isMaxHeap(left) && isMaxHeap(right); } public Iterator iterator() { return new HeapIterator(); } private class HeapIterator implements Iterator { // create a new pq private MaxPQ copy; // add all items to copy of heap // takes linear time since already in heap order so no keys move public HeapIterator() { if (comparator == null) copy = new MaxPQ (size()); else copy = new MaxPQ (size(), comparator); for (int i = 1; i <= N; i++) copy.insert(pq[i]); } public boolean hasNext() { return !copy.isEmpty(); } public void remove() { throw new UnsupportedOperationException(); } public Key next() { if (!hasNext()) throw new NoSuchElementException(); return copy.delMax(); } } public static void main(String[] args) { MaxPQ pq = new MaxPQ (); while (!StdIn.isEmpty()) { String item = StdIn.readString(); if (!item.equals("-")) pq.insert(item); else if (!pq.isEmpty()) StdOut.print(pq.delMax() + " "); } StdOut.println("(" + pq.size() + " left on pq)"); } }
增加索引
增加change, contains, delete方法
索引優(yōu)先隊(duì)列API 各方法的時(shí)間成本 IndexMinPQ 代碼簡易版
public class IndexMinPQ> implements Iterable { private int maxN; // maximum number of elements on PQ private int N; // number of elements on PQ private int[] pq; // binary heap using 1-based indexing private int[] qp; // inverse of pq - qp[pq[i]] = pq[qp[i]] = i private Key[] keys; // keys[i] = priority of i public IndexMinPQ(int maxN) { this.maxN = maxN; keys = (Key[]) new Comparable[maxN + 1]; // 存一發(fā)原來的數(shù)組 pq = new int[maxN + 1]; // 這是二叉樹,比如1位置放的是想要記錄的是keys[3],但是記錄了3,即pq[1]=3 qp = new int[maxN + 1]; // 反過來,keys[3]放在哪里了呢?放在了樹的1位置, qp[3]=1 for (int i = 0; i <= maxN; i++) qp[i] = -1; } public void insert(int i, Key key) { if (contains(i)) throw new IllegalArgumentException("index is already in the priority queue"); N++; qp[i] = N; // i放到了樹最后的位置N,通過原數(shù)組i找到樹中的位置N pq[N] = i; // 樹的最后位置N放了i,通過樹中的位置N找到原數(shù)組i keys[i] = key; //具體是什么 swim(N); //上浮 } private void swim(int k) { while (k > 1 && greater(k/2, k)) { exch(k, k/2); //在這里pq,qp都換好了 k = k/2; } } private void exch(int i, int j) { int swap = pq[i]; pq[i] = pq[j]; pq[j] = swap; qp[pq[i]] = i; //因?yàn)槭悄孢\(yùn)算 qp[pq[j]] = j; } public int delMin() { if (N == 0) throw new NoSuchElementException("Priority queue underflow"); int min = pq[1]; exch(1, N--); sink(1); qp[min] = -1; // delete keys[min] = null; // to help with garbage collection pq[N+1] = -1; // not needed return min; } public void changeKey(int i, Key key) {//改的是原來的數(shù)組 if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue"); keys[i] = key; swim(qp[i]); //可能往上 sink(qp[i]); //可能往下 } }
完整版
public class IndexMinPQ> implements Iterable { private int maxN; // maximum number of elements on PQ private int N; // number of elements on PQ private int[] pq; // binary heap using 1-based indexing private int[] qp; // inverse of pq - qp[pq[i]] = pq[qp[i]] = i private Key[] keys; // keys[i] = priority of i public IndexMinPQ(int maxN) { if (maxN < 0) throw new IllegalArgumentException(); this.maxN = maxN; keys = (Key[]) new Comparable[maxN + 1]; pq = new int[maxN + 1]; qp = new int[maxN + 1]; for (int i = 0; i <= maxN; i++) qp[i] = -1; } public boolean isEmpty() { return N == 0; } public boolean contains(int i) { if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException(); return qp[i] != -1; } public int size() { return N; } public void insert(int i, Key key) { if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException(); if (contains(i)) throw new IllegalArgumentException("index is already in the priority queue"); N++; qp[i] = N; pq[N] = i; keys[i] = key; swim(N); } public int minIndex() { if (N == 0) throw new NoSuchElementException("Priority queue underflow"); return pq[1]; } public Key minKey() { if (N == 0) throw new NoSuchElementException("Priority queue underflow"); return keys[pq[1]]; } public int delMin() { if (N == 0) throw new NoSuchElementException("Priority queue underflow"); int min = pq[1]; exch(1, N--); sink(1); assert min == pq[N+1]; qp[min] = -1; // delete keys[min] = null; // to help with garbage collection pq[N+1] = -1; // not needed return min; } public Key keyOf(int i) { if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException(); if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue"); else return keys[i]; } public void changeKey(int i, Key key) { if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException(); if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue"); keys[i] = key; swim(qp[i]); sink(qp[i]); } public void change(int i, Key key) { changeKey(i, key); } public void decreaseKey(int i, Key key) { if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException(); if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue"); if (keys[i].compareTo(key) <= 0) throw new IllegalArgumentException("Calling decreaseKey() with given argument would not strictly decrease the key"); keys[i] = key; swim(qp[i]); } public void increaseKey(int i, Key key) { if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException(); if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue"); if (keys[i].compareTo(key) >= 0) throw new IllegalArgumentException("Calling increaseKey() with given argument would not strictly increase the key"); keys[i] = key; sink(qp[i]); } public void delete(int i) { if (i < 0 || i >= maxN) throw new IndexOutOfBoundsException(); if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue"); int index = qp[i]; exch(index, N--); swim(index); sink(index); keys[i] = null; qp[i] = -1; } private boolean greater(int i, int j) { return keys[pq[i]].compareTo(keys[pq[j]]) > 0; } private void exch(int i, int j) { int swap = pq[i]; pq[i] = pq[j]; pq[j] = swap; qp[pq[i]] = i; qp[pq[j]] = j; } private void swim(int k) { while (k > 1 && greater(k/2, k)) { exch(k, k/2); k = k/2; } } private void sink(int k) { while (2*k <= N) { int j = 2*k; if (j < N && greater(j, j+1)) j++; if (!greater(k, j)) break; exch(k, j); k = j; } } public Iterator iterator() { return new HeapIterator(); } private class HeapIterator implements Iterator { // create a new pq private IndexMinPQ copy; // add all elements to copy of heap // takes linear time since already in heap order so no keys move public HeapIterator() { copy = new IndexMinPQ (pq.length - 1); for (int i = 1; i <= N; i++) copy.insert(pq[i], keys[pq[i]]); } public boolean hasNext() { return !copy.isEmpty(); } public void remove() { throw new UnsupportedOperationException(); } public Integer next() { if (!hasNext()) throw new NoSuchElementException(); return copy.delMin(); } } }
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/66536.html
摘要:算法圖示代碼復(fù)雜度時(shí)間初始化優(yōu)先隊(duì)列,最壞情況次比較每次操作成本次比較,最多還會(huì)多次和次操作,但這些成本相比的增長數(shù)量級可忽略不計(jì)詳見空間 Algorithms Fourth EditionWritten By Robert Sedgewick & Kevin WayneTranslated By 謝路云Chapter 4 Section 3 最小生成樹 定義 樹是特殊的圖 圖的生...
摘要:相關(guān)操作就是判斷的不等號符號改反,初始值設(shè)為負(fù)無窮副本的最短路徑即為原圖的最長路徑。方法是同上面一樣構(gòu)造圖,同時(shí)會(huì)添加負(fù)權(quán)重邊,再將所有邊取反,然后求最短路徑最短路徑存在則可行沒有負(fù)權(quán)重環(huán)就是可行的調(diào)度。 Algorithms Fourth EditionWritten By Robert Sedgewick & Kevin WayneTranslated By 謝路云Chapter ...
摘要:只好特地拎出來記錄證明一下算法步驟第一步在逆圖上運(yùn)行,將頂點(diǎn)按照逆后序方式壓入棧中顯然,這個(gè)過程作用在有向無環(huán)圖上得到的就是一個(gè)拓?fù)渑判蜃饔迷诜巧系玫降氖且粋€(gè)偽拓?fù)渑判虻诙皆谠瓐D上按第一步的編號順序進(jìn)行。等價(jià)于已知在逆圖中存在有向路徑。 Algorithms Fourth EditionWritten By Robert Sedgewick & Kevin WayneTranslat...
摘要:邊僅由兩個(gè)頂點(diǎn)連接,并且沒有方向的圖稱為無向圖。用分隔符當(dāng)前為空格,也可以是分號等分隔。深度優(yōu)先算法最簡搜索起點(diǎn)構(gòu)造函數(shù)找到與起點(diǎn)連通的其他頂點(diǎn)。路徑構(gòu)造函數(shù)接收一個(gè)頂點(diǎn),計(jì)算到與連通的每個(gè)頂點(diǎn)之間的路徑。 Algorithms Fourth EditionWritten By Robert Sedgewick & Kevin WayneTranslated By 謝路云Chapter...
摘要:離心率計(jì)算題目釋義計(jì)算點(diǎn)的離心率,圖的直徑,半徑,中心計(jì)算圖的圍長定義點(diǎn)的離心率圖中任意一點(diǎn),的離心率是圖中其他點(diǎn)到的所有最短路徑中最大值。圖的中心圖中離心率長度等于半徑的點(diǎn)。改動(dòng)離心率計(jì)算,在遍歷中增加的賦值即可。 離心率計(jì)算 4.1.16 The eccentricity of a vertex v is the the length of the shortest path fr...
閱讀 2900·2021-11-15 11:39
閱讀 1522·2021-08-19 10:56
閱讀 1097·2019-08-30 14:12
閱讀 3742·2019-08-29 17:29
閱讀 723·2019-08-29 16:21
閱讀 3425·2019-08-26 12:22
閱讀 1520·2019-08-23 16:30
閱讀 1026·2019-08-23 15:25