国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

容器之數(shù)組~Arrays源碼分析(一)

lvzishen / 3323人閱讀

摘要:容器相關的操作及其源碼分析說明本文是基于分析的。源碼是個好東東,各種編碼技巧,再次佩服老外下一個主題是容器,。在了解容器之前我們先來看下重點的數(shù)據(jù)吧,還有工具類。第一段話說明返回一個指定數(shù)組的固定列表。

容器相關的操作及其源碼分析 說明

1、本文是基于JDK 7 分析的。JDK 8 待我工作了得好好研究下。Lambda、Stream。

2、因為個人能力有限,只能以模仿的形式+自己的理解寫筆記。如有不對的地方還請諒解。

3、記錄的比較亂,但是對自己加深印象還是蠻有作用的。

4、筆記放github了,有興趣的可以看看。喜歡的可以點個star。

5、讀過源碼的可以快速瀏覽一遍,也能加深自己的理解。

6、源碼是個好東東,各種編碼技巧,再次佩服老外?。?!

7、下一個主題是容器,gogogo。感覺可以的話可以關注哈。

1、Array、Arrays

在了解容器之前我們先來看下重點的數(shù)據(jù)吧,還有Arrays工具類。

首先看一個栗子,利用數(shù)組計算大數(shù)字。完整的點這里,重點思想就是計算數(shù)組中的每一個數(shù),關鍵字是怎么進和留。

/**
 * Created by guo on 2018/2/2.
 * 利用數(shù)組計算大數(shù)字
 */
public static int[] get(int[] ints, int num) {
    //計算每一位
    for (int i = 0; i < ints.length; i++) {
        ints[i] *= num;

    }
    //進和留
    for (int i = ints.length - 1; i > 0; i--) {

        //把個位數(shù)除10,加上前面的數(shù)
        ints[i - 1] += ints[i] / 10;
        //把最后的數(shù)模10,剩余個位數(shù)。1-9
        ints[i] = ints[i] % 10;
    }
    return ints;
}

需要注意的還有一個System.arrayscopy()方法,那就是底層數(shù)組的拷貝,這個也是關鍵點。完整代碼

/**
 * 底層實現(xiàn)的數(shù)組拷貝,是一個本地方法
 * void arraycopy(Object src,  int  srcPos,Object dest, int destPos,int length);
 *  src      the source array.
 * srcPos   starting position in the source array.
 * dest     the destination array.
 * destPos  starting position in the destination data.
 * length   the number of array elements to be copied.
 */
System.arraycopy(src,-1,dest,2,3);
/**
 * 參數(shù):
 * src:源,從哪個數(shù)組中拷貝數(shù)據(jù)
 * dest:目標:把數(shù)據(jù)拷貝到哪一個數(shù)組中
 * srcpos:從原數(shù)組中哪一個位置開始拷貝
 * destPos:在目標數(shù)組開始存放的位置
 * length:拷貝的個數(shù)
 */
static void arrayCopy(int[] src, int srcPos, int[] dest, int destPos, int length) {
    if(srcPos < 0 || destPos < 0 || length < 0) {
        throw  new RuntimeException("出異常了,重新檢查");
    }
    for (int index = srcPos; index < srcPos + length; index++) {
        dest[destPos] = src[index];
        destPos++;

    }
}

static void print(int[] arr) {
    String str = "[";
    for (int i = 0; i < arr.length; i++) {
        str += arr[i];
        if (i != arr.length - 1) {   //不是最后一個元素
            str = str + ",";
        }
    }
    str = str + "]";
    System.out.println(str);
}

其他內(nèi)容不是今天的重點,這里只是容器中需要數(shù)組的底層Copy。

Arrays

Arrays類是Java中用于操作數(shù)組的類,使用這個工具類可以減少平常很多工作量。 主題框架參考這里,寫的非常不錯,

我們具體現(xiàn)看看它有哪些方法

1、sort 排序

2、binarySearch 二分查找(折半查找)

3、equals 比較

4、fill 填充

5、asList 轉(zhuǎn)列表 記得一個toArray嗎?

6、indexOf str首次出現(xiàn)的位置

6、hash 哈希(重點)

7、toString 重寫Object中方法

首先來看看排序的

/**
 * Sorts the specified array into ascending numerical order.
 * @param a the array to be sorted
 */
public static void sort(int[] a) {
    DualPivotQuicksort.sort(a);
}

需要關注的是底層默認是按升序(asc),還有調(diào)用這個DualPivotQuicksort.sort(a)方法是什么鬼?中文意思為雙軸快速排序,它在性能上優(yōu)于傳統(tǒng)的單軸快速排序。 它是不穩(wěn)定的。

重點在這里O(n log(n)),還有這句話` and is typically
faster than traditional (one-pivot) Quicksort implementations.` 具體看大佬的博文友情提示

/**
 * This class implements the Dual-Pivot Quicksort algorithm by
 * Vladimir Yaroslavskiy, Jon Bentley, and Josh Bloch. The algorithm
 * offers O(n log(n)) performance on many data sets that cause other
 * quicksorts to degrade to quadratic performance, and is typically
 * faster than traditional (one-pivot) Quicksort implementations.
 */
final class DualPivotQuicksort {
}

上面的sort傳進去的是int[] a,接下來看看傳Object對象的。All elements in the array must implement the Comparable interface.

/**
 * Sorts the specified array of objects into ascending order, according
 * to the {@linkplain Comparable natural ordering} of its elements.
 * All elements in the array must implement the {@link Comparable}
 * interface.  Furthermore, all elements in the array must be
 * mutually comparable (that is, {@code e1.compareTo(e2)} must
 * not throw a {@code ClassCastException} for any elements {@code e1}
 * and {@code e2} in the array).
 */
public static void sort(Object[] a) {
    if (LegacyMergeSort.userRequested)
        legacyMergeSort(a);
    else
        ComparableTimSort.sort(a);
}

在來看看帶泛型參數(shù)的,這個重點那,有三個點需要關注,Comparator,ClassCastExceptionTimSort算法 是從JDK 7 開始默認支持,

/**
 * Sorts the specified array of objects according to the order induced by
 * the specified comparator.  All elements in the array must be
 * mutually comparable by the specified comparator must not throw a  * *ClassCastException  for any elements and  in the array.
 */
public static  void sort(T[] a, Comparator c) {
    if (LegacyMergeSort.userRequested)
        legacyMergeSort(a, c);
    else
        TimSort.sort(a, c);     //注意這個TimSort
}

整體上在看看這幾個到底啥意思?

/**
*大概意思就是舊的歸并算法使用了系統(tǒng)屬性,可能會導致循環(huán)依賴,不是能是靜態(tài)boolean,未來版本將移除
 * Old merge sort implementation can be selected (for
 * compatibility with broken comparators) using a system property.
 * Cannot be a static boolean in the enclosing class due to
 * circular dependencies. To be removed in a future release.
 */
static final class LegacyMergeSort {
     private static final boolean userRequested =
         java.security.AccessController.doPrivileged(
             new sun.security.action.GetBooleanAction(
                 "java.util.Arrays.useLegacyMergeSort")).booleanValue();
 }

//傳進Object的排序,
 public static void sort(Object[] a) {
     if (LegacyMergeSort.userRequested)
         legacyMergeSort(a);
     else
         ComparableTimSort.sort(a);
 }

 /** To be removed in a future release. */
 private static void legacyMergeSort(Object[] a) {
     Object[] aux = a.clone();
     mergeSort(aux, a, 0, a.length, 0);
 }
//都要移除啊,看來的JDK8了
 /** To be removed in a future release. */
 private static void legacyMergeSort(Object[] a,
                                     int fromIndex, int toIndex) {
     rangeCheck(a.length, fromIndex, toIndex);
     Object[] aux = copyOfRange(a, fromIndex, toIndex);
     mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
 }

 /**
 * 列表大小低于插入將優(yōu)先使用歸并算法,也要移除啊,
  * Tuning parameter: list size at or below which insertion sort will be
  * used in preference to mergesort.
  * To be removed in a future release.
  */
 private static final int INSERTIONSORT_THRESHOLD = 7;

 /**
  * Src is the source array that starts at index 0
  * Dest is the (possibly larger) array destination with a possible offset
  * low is the index in dest to start sorting
  * high is the end index in dest to end sorting
  * off is the offset to generate corresponding low, high in src
  * To be removed in a future release.
  */
 private static void mergeSort(Object[] src,
                               Object[] dest,
                               int low,
                               int high,
                               int off) {
     int length = high - low;

     // Insertion sort on smallest arrays
     //小數(shù)組將使用普通的插入算法
     if (length < INSERTIONSORT_THRESHOLD) {
         for (int i=low; ilow &&
                      ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
                 swap(dest, j, j-1);
         return;
     }
     // Merge sorted halves (now in src) into dest

 }
 ----------------------------------------------------------------------------
 /**
 * Swaps x[a] with x[b]. 這個可以理解,面試手寫算法時,可以寫這個那。
 */
private static void swap(Object[] x, int a, int b) {
    Object t = x[a];
    x[a] = x[b];
    x[b] = t;
}

從上面的邏輯可以看出,它的實現(xiàn)方式分為兩種,一種是通過Arrays中的歸并算法實現(xiàn)的,另外一種采用了TimSOrt算法

這個排序算法是穩(wěn)定的,JDK8已經(jīng)刪除了,我們來看看8是怎么實現(xiàn)的。

/**
 * Sorts the specified array of objects according to the order induced by
 * the specified comparator.  All elements in the array must be
 * mutually comparable by the specified comparator (that is,
 * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
 * for any elements {@code e1} and {@code e2} in the array).
 * @since 1.8
 */
@SuppressWarnings("unchecked")
public static  void parallelSort(T[] a, Comparator cmp) {
    if (cmp == null)
        cmp = NaturalOrder.INSTANCE;
    int n = a.length, p, g;
    if (n <= MIN_ARRAY_SORT_GRAN ||
        (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
        TimSort.sort(a, 0, n, cmp, null, 0, 0);  //還是這個
    else
        new ArraysParallelSortHelpers.FJObject.Sorter
            (null, a,
             (T[])Array.newInstance(a.getClass().getComponentType(), n),
             0, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
             MIN_ARRAY_SORT_GRAN : g, cmp).invoke();
}

需要注意的是方法名變成了parallelSort并行啊,

這個也是重點,除傳入int[]之外其他都變成了parallelSort.慢慢來吧,先JDK7,在JDK 8.還有就是可以傳進其他類型,char、long、byte。etc(等)。

/**
 * Checks that {@code fromIndex} and {@code toIndex} are in
 * the range and throws an exception if they aren"t.
 */
private static void rangeCheck(int arrayLength, int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
                "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
        throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > arrayLength) {
        throw new ArrayIndexOutOfBoundsException(toIndex);
    }
}
二分查找,

注意接下來,我們只看泛型有關的方法,其他實現(xiàn)大同小異。因為泛型很重要。

/**
 * Searches the specified array for the specified object using the binary
 * search algorithm.  The array must be sorted into ascending order
 * according to the specified comparator (as by the
 * {@link #sort(Object[], Comparator) sort(T[], Comparator)}
 * method) prior to making this call.  If it is
 * not sorted, the results are undefined.
 * If the array contains multiple
 * elements equal to the specified object, there is no guarantee which one
 * will be found.
 */
public static  int binarySearch(T[] a, T key, Comparator c) {
    return binarySearch0(a, 0, a.length, key, c);
}
/**
 * Searches a range of
 * the specified array for the specified object using the binary
 * search algorithm.
 * The range must be sorted into ascending order
 * according to the specified comparator (as by the
 * {@link #sort(Object[], int, int, Comparator)
 * sort(T[], int, int, Comparator)}
 * method) prior to making this call.
 * If it is not sorted, the results are undefined.
 * If the range contains multiple elements equal to the specified object,
 * there is no guarantee which one will be found.

 */
public static  int binarySearch(T[] a, int fromIndex, int toIndex,
                                   T key, Comparator c) {
    rangeCheck(a.length, fromIndex, toIndex);
    return binarySearch0(a, fromIndex, toIndex, key, c);
}

rangeCheck作用就是檢查邊界,看數(shù)據(jù)是否越界,會拋出ArrayIndexOutOfBoundsException

binarySearch0這是什么鬼?點進去看看

要明白首先看參數(shù)

//fromIndex就是開始索引(inclusive),toIndex結束(exclusive),key就是指定的數(shù)。
* @param fromIndex the index of the first element (inclusive) to be
*          searched
* @param toIndex the index of the last element (exclusive) to be searched
* @param key the value to be searched for
* @return index of the search key, if it is contained in the array
*         within the specified range;
 */
/**
* 二分查找法(折半查找):前提是在已經(jīng)排好序的數(shù)組中,通過將待查找的元素
* 與中間索引值對應的元素進行比較,若大于中間索引值對應的元素,去右半邊查找,
* 否則,去左邊查找。依次類推。直到找到位置;找不到返回一個負數(shù)
*
* Like public version, but without range checks.
*這里沒有邊界檢查,這才是二分查找重點。
*/
 private static  int binarySearch0(T[] a, int fromIndex, int toIndex,
                                      T key, Comparator c) {
     if (c == null) {  //先判斷
         return binarySearch0(a, fromIndex, toIndex, key);
     }
     int low = fromIndex;       //開始下標
     int high = toIndex - 1;    //結束下標

     while (low <= high) {
         int mid = (low + high) >>> 1;      //這里用了向右移2位(左邊補0),/2 向左就是 *2.
         T midVal = a[mid];
         int cmp = c.compare(midVal, key);    //比較key是在左邊還是右邊
         if (cmp < 0)                         //小于0意味著key大,
             low = mid + 1;                   //則去掉左邊的值。中間的索引+1就是新的開始下標
         else if (cmp > 0)                    //key比中間的小
             high = mid - 1;                  //則去掉右邊的,中間下標-1,就是新的結束下標
         else
             return mid;                      // key found
     }
     return -(low + 1);                       // key not found.這里是-1 -(0 + 1)
 }
equals

接下來在看看比較的,這個是重點。這里只看Object[],其他還有很多,如int、byte、char

重點看這句話:

In other words, the two arrays are equal if
they contain the same elements in the same order.

Also, two array references are considered equal if both are null

以相同的順序,并且互相包含,則返回true,

兩個數(shù)組引用都為null,則返回true。

/**
 * Returns true if the two specified arrays of Objects are
 * equal to one another.  The two arrays are considered equal if
 * both arrays contain the same number of elements, and all corresponding
 * pairs of elements in the two arrays are equal.  Two objects e1
 * and e2 are considered equal if (e1==null ? e2==null
 * : e1.equals(e2)).  In other words, the two arrays are equal if
 * they contain the same elements in the same order.  Also, two array
 * references are considered equal if both are null.

* * @param a one array to be tested for equality * @param a2 the other array to be tested for equality * @return true if the two arrays are equal //相等返回true */ public static boolean equals(Object[] a, Object[] a2) { if (a==a2) //注意,這里是地址的比較, return true; if (a==null || a2==null) //任意一個為null,返回false return false; int length = a.length; if (a2.length != length) //數(shù)組長度比較 return false; for (int i=0; i fill 填充

就是循環(huán)進行賦值填充,

/**
 * Assigns the specified int value to each element of the specified array
 * of ints.
 * @param a the array to be filled
 * @param val the value to be stored in all elements of the array
 */
public static void fill(int[] a, int val) {
    for (int i = 0, len = a.length; i < len; i++)
        a[i] = val;
}

-----------------------------------------------------------------------------
/**
 * Assigns the specified Object reference to each element of the specified
 * range of the specified array of Objects.  The range to be filled
 * extends from index fromIndex, inclusive, to index
 * toIndex, exclusive.  (If fromIndex==toIndex, the
 * range to be filled is empty.)
 */
public static void fill(Object[] a, int fromIndex, int toIndex, Object val) {
    rangeCheck(a.length, fromIndex, toIndex);
    for (int i = fromIndex; i < toIndex; i++)
        a[i] = val;
}

這里主要想再次看下這個邊界檢查

主要作用就是檢查a.length是否在開始下標和結束下標之間。

/**
 * Checks that {@code fromIndex} and {@code toIndex} are in
 * the range and throws an appropriate exception, if they aren"t.
 */
private static void rangeCheck(int length, int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {               //開始下標還能比結束大嗎?你這不是胡鬧嗎?
        throw new IllegalArgumentException(    //非法-參數(shù)-異常,很常見的。
            "fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {                      //你還沒開始呢,能小于0嗎?
        throw new ArrayIndexOutOfBoundsException(fromIndex);    //數(shù)據(jù)下標越界啦,
    }
    if (toIndex > length) {                   //你要查的不再這個范圍呢。
        throw new ArrayIndexOutOfBoundsException(toIndex);      //你越界了
    }
}
clone

就像剛開始數(shù)組復制的那個一樣,

首先這里會拋出大家熟悉的異常NullPointerExceptionif original is null

新數(shù)組的長度能為負數(shù)嗎?當然不能啊,所以拋出NegativeArraySizeException

這里最為關鍵的是底層使用了本地方法,實現(xiàn)大概由剛開始那個復制差不多。但,考錄的因素太多了,或者是版權,或者根本就不想讓我們知道。還有就是這個用底層畢竟效率快啊,直接和系統(tǒng)打交道。

/**
 * Copies the specified array, truncating or padding with zeros (if necessary)
 * so the copy has the specified length.  For all indices that are
 * valid in both the original array and the copy, the two arrays will
 * contain identical values.  For any indices that are valid in the
 * copy but not the original, the copy will contain (byte)0.
 * Such indices will exist if and only if the specified length
 * is greater than that of the original array.
 *
 * @param original the array to be copied
 * @param newLength the length of the copy to be returned
 * @return a copy of the original array, truncated or padded with zeros
 *     to obtain the specified length
 * @throws NegativeArraySizeException if newLength is negative
 * @throws NullPointerException if original is null
 * @since 1.6
 */
public static byte[] copyOf(byte[] original, int newLength) {
    byte[] copy = new byte[newLength];
    System.arraycopy(original, 0, copy, 0,
                     Math.min(original.length, newLength));
    return copy;
}
--------------------------范圍復制---------------------------------------------

public static char[] copyOfRange(char[] original, int from, int to) {
    int newLength = to - from;
    if (newLength < 0)
        throw new IllegalArgumentException(from + " > " + to);
    char[] copy = new char[newLength];
    System.arraycopy(original, from, copy, 0,
                     Math.min(original.length - from, newLength));
    return copy;
}
---------------------------底層復制----------------------------------------------
注意,這個類是不能進行實例化的,
public final class System {
/**
 * Copies an array from the specified source array, beginning at the
 * specified position, to the specified position of the destination array.
 * A subsequence of array components are copied from the source
 * array referenced by src to the destination array
 * referenced by dest. T
* @param      src      the source array.
* @param      srcPos   starting position in the source array.
* @param      dest     the destination array.
* @param      destPos  starting position in the destination data.
* @param      length   the number of array elements to be copied.
*/
public static native void arraycopy(Object src,  int  srcPos,
                                   Object dest, int destPos,
                                   int length);
}
asList

需要注意的是這里直接new了一個內(nèi)部的ArrayList,實現(xiàn)類兩個接口。

第一段話說明:返回一個指定數(shù)組的固定列表。并不是java.util.ArrayList,而且它不支持添加和移除元素,不支持擴容。但支持序列化和隨機存儲,我們具體來看看

/**
    * Returns a fixed-size list backed by the specified array.  (Changes to
    * the returned list "write through" to the array.)  This method acts
    * as bridge between array-based and collection-based APIs, in
    * combination with {@link Collection#toArray}.  The returned list is
    * serializable and implements {@link RandomAccess}.
    *
    * 

This method also provides a convenient way to create a fixed-size * list initialized to contain several elements: *

    *     List stooges = Arrays.asList("Larry", "Moe", "Curly");
    * 
* * @param a the array by which the list will be backed * @return a list view of the specified array */ @SafeVarargs public static List asList(T... a) { return new ArrayList<>(a); }

為了方便,把這個方法抽出來,里面的方法還會繼續(xù)抽。

   /**
    * @serial include
    */
   private static class ArrayList extends AbstractList
       implements RandomAccess, java.io.Serializable
   {
       private static final long serialVersionUID = -2764017481108945198L;   進行反序列化時驗證用的
       private final E[] a;

       ArrayList(E[] array) {        //進行初始化,如果等null,則拋出空指針異常
           if (array==null)
               throw new NullPointerException();
           a = array;               //然后再賦值給a
       }

       public int size() {
           return a.length;
       }

       public Object[] toArray() {    //原來你跑在這里了,
           return a.clone();
       }

       public  T[] toArray(T[] a) {
           int size = size();
           if (a.length < size)              //這里不懂
               return Arrays.copyOf(this.a, size,
                                    (Class) a.getClass());
           System.arraycopy(this.a, 0, a, 0, size);
           if (a.length > size)
               a[size] = null;
           return a;
       }

       public E get(int index) {
           return a[index];                     //直接返回索引位置的元素
       }

       public E set(int index, E element) {
           E oldValue = a[index];               //直接替換舊的元素
           a[index] = element;
           return oldValue;
       }

       public int indexOf(Object o) {          //o是否首次出現(xiàn)的索引位置,
           if (o==null) {
               for (int i=0; i
hash

這個方法很重要,后續(xù)出場的幾率很大,其實也很簡單,

首先來看一下HashCode和equals方法調(diào)用的過程:

/**
 * new String("abc")
 * 1.調(diào)用對象的hashCode方法,new String("abc").hashCode()    == 96354
 * 2.集合在容器內(nèi)找,有沒有和96354一樣的哈希值,
 * new String("abc")
 * 3.調(diào)用對象的hashCode方法,new String("abc").hashCode()    == 96354
 * 4.集合在啊容器內(nèi),找到了一個對象也是96354
 * 5.集合會讓后來的new String("abc")調(diào)用對象的equals(已經(jīng)有的對象)
 * 5.兩個對象哈希值一樣,equals方法返回true,集合判斷元素重復,
 * new String("adc)
 * 集合調(diào)用對象的hashCode方法 new String("adc").hashCode()=  96354
 * 集合去容器中找,有沒有96354的對象,找到了
 * 集合讓后來的對象 new String("adc").equals(已存在的對象)
 * 兩個對象的哈希值一樣,equals返回false
 * 集合判定對象沒有重復,因此采用桶的方式
 */

 HashSet set = new HashSet<>();
set.add(new String("abc"));
set.add(new String("abc"));
set.add(new String("bbc"));
set.add(new String("bbc"));
System.out.println(set);          //[bbc, abc]

這里到底是怎么算出96354的呢?不急,先來看看字符編碼,因為Java采用Unicode編碼,一般兩個字節(jié)表示一個字符,ASCLL則一個字節(jié)表示一個字符。所以"abc"對應的就是(97+98+99) “ABC”則為(65+66+67)

注意在這里31是一個素數(shù),就不除它自己不能被整除的。

注意下面這個是字符串中的hashCode方法,就是重復計算,

public int hashCode() {
    int h = hash;
    if (h == 0 && value.length > 0) {
        char val[] = value;

        for (int i = 0; i < value.length; i++) {
            h = 31 * h + val[i];
        }
        hash = h;
    }
    return h;
}

底下下這個是Arrays類里面的。重寫都不一樣。也可以自己重新,

/**
  * Returns a hash code based on the contents of the specified array.
  * For any two byte arrays a and b
  * such that Arrays.equals(a, b), it is also the case that
  * Arrays.hashCode(a) == Arrays.hashCode(b).
  *
  * 

The value returned by this method is the same value that would be * obtained by invoking the {@link List#hashCode() hashCode} * method on a {@link List} containing a sequence of {@link Byte} * instances representing the elements of a in the same order. * If a is null, this method returns 0. * * @param a the array whose hash value to compute * @return a content-based hash code for a * @since 1.5 */ public static int hashCode(byte a[]) { if (a == null) return 0; int result = 1; for (byte element : a) result = 31 * result + element; return result; //最后返回 }

toString

需要注意的是底層使用StringBuilder以追加的形式打印輸出。

/**
 * Returns a string representation of the contents of the specified array.
 * The string representation consists of a list of the array"s elements,
 * enclosed in square brackets ("[]").  Adjacent elements
 * are separated by the characters ", " (a comma followed
 * by a space).  Elements are converted to strings as by
 * String.valueOf(byte).  Returns "null" if
 * a is null.
 *
 * @param a the array whose string representation to return
 * @return a string representation of a
 * @since 1.5
 */
public static String toString(byte[] a) {
    if (a == null)
        return "null";
    int iMax = a.length - 1;  //如果是一個空數(shù)據(jù)(和null有區(qū)別),(0 - 1)
    if (iMax == -1)
        return "[]";          //則直接輸出[]

    StringBuilder b = new StringBuilder();     //這里是可變的,并不是重新創(chuàng)建,只是在追加。
    b.append("[");
    for (int i = 0; ; i++) {
        b.append(a[i]);                         //循環(huán)追加a[i],當?shù)扔?1的時候最后追加"]"打印
        if (i == iMax)
            return b.append("]").toString();
        b.append(", ");
    }
}

其實還有許多重載方法,這里就不展示了,我們來看下Person類重寫euqals、hashCode、toString是長啥樣、

public class Person {
    private String name;
    private int age;

    //Setter、Getter、Constructor略

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        Person person = (Person) o;

        if (age != person.age) return false;
        if (name != null ? !name.equals(person.name) : person.name != null) return false;

        return true;
    }

    @Override
    public int hashCode() {
        int result = name != null ? name.hashCode() : 0;
        result = 31 * result + age;
        return result;
    }

    @Override
    public String toString() {
        return "Person{" +
                "name="" + name + """ +
                ", age=" + age +
                "}";
    }
}

這個主題就到這里吧,下一個主題正式進入容器的介紹。gogogo

文章版權歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/68719.html

相關文章

  • JDK源碼容器篇)

    摘要:三系列用于保存鍵值對,無論是,還是已棄用的或者線程安全的等,都是基于紅黑樹。是完全基于紅黑樹的,并在此基礎上實現(xiàn)了接口。可以看到,只有紅黑樹,且紅黑樹是通過內(nèi)部類來實現(xiàn)的。 JDK容器 前言 閱讀JDK源碼有段時間了,準備以博客的形式記錄下來,也方便復習時查閱,本文參考JDK1.8源碼。 一、Collection Collection是所有容器的基類,定義了一些基礎方法。List、Se...

    Soarkey 評論0 收藏0
  • 容器Collections工具類源碼分析(重點)(二)

    摘要:容器相關的操作及其源碼分析說明本文是基于分析的。有哪些抽取出來的工具類。即對于反轉(zhuǎn)方式如下替換值查找在出現(xiàn)的最小位置。查找在出現(xiàn)的最大位置。即返回的和原在元素上保持一致,但不可修改。 容器相關的操作及其源碼分析 說明 1、本文是基于JDK 7 分析的。JDK 8 待我工作了得好好研究下。Lambda、Stream。 2、因為個人能力有限,只能以模仿的形式+自己的理解寫筆記。如有不對的...

    acrazing 評論0 收藏0
  • 源碼|jdk源碼-ArrayList與Vector源碼閱讀

    摘要:畢業(yè)兩個星期了,開始成為一名正式的碼農(nóng)了。將指定位置的數(shù)據(jù)移除。但是問題是,為時,并不是直接一個大小為的數(shù)組,而是使用靜態(tài)變量來代替。此外,函數(shù)還做了越界檢查。返回迭代器,與之有一個搭配的輔助類。 畢業(yè)兩個星期了,開始成為一名正式的java碼農(nóng)了。一直對偏底層比較感興趣,想著深入自己的java技能,看書、讀源碼、總結、造輪子實踐都是付諸行動的方法。說到看源碼,就應該由簡入難,逐漸加深,...

    0x584a 評論0 收藏0
  • Week 2 - Java 容器 - 詳細剖析 List ArrayList, Vector,

    摘要:底層使用的是雙向鏈表數(shù)據(jù)結構之前為循環(huán)鏈表,取消了循環(huán)。快速隨機訪問就是通過元素的序號快速獲取元素對象對應于方法。而接口就是用來標識該類支持快速隨機訪問。僅僅是起標識作用。,中文名為雙端隊列。不同的是,是線程安全的,內(nèi)部使用了進行同步。 前言 學習情況記錄 時間:week 2 SMART子目標 :Java 容器 記錄在學習Java容器 知識點中,關于List的需要重點記錄的知識點。...

    MartinDai 評論0 收藏0
  • 讀 Zepto 源碼操作 DOM

    摘要:輔助方法這個方法遞歸遍歷的子節(jié)點,將節(jié)點交由回調(diào)函數(shù)處理。對集合進行遍歷,調(diào)用方法,如果為函數(shù),則將回調(diào)函數(shù)返回的結果作為參數(shù)傳給否則,如果為,則將也即包裹元素的副本傳給,否則直接將傳給。 這篇依然是跟 dom 相關的方法,側重點是操作 dom 的方法。 讀Zepto源碼系列文章已經(jīng)放到了github上,歡迎star: reading-zepto 源碼版本 本文閱讀的源碼為 zepto...

    beita 評論0 收藏0

發(fā)表評論

0條評論

最新活動
閱讀需要支付1元查看
<