摘要:然而對于一個和關聯的線程來說在線程被創建和更新他的之前會有一個小窗口,因此必須檢查這種情況為線程結構體分配內存并創建線程。可能是,因此我們耗盡了內存太多的活躍線程。代碼執行到這,線程還是狀態,因為線程必須被創建者直接啟動。
引言
說到Thread大家都很熟悉,我們平常寫并發代碼的時候都會接觸到,那么我們來看看下面這段代碼是如何初始化以及執行的呢?
public class ThreadDemo { public static void main(String[] args) { new Thread().start(); } }初始化流程
代碼就一行很簡單,那么這行簡單的代碼背后做了那些事情呢?
初始化Thread這個類首先JVM會去加載Thread的字節碼,初始化這個類,這里即調用下面這段代碼:
public class Thread implements Runnable { /* Make sure registerNatives is the first thingdoes. */ private static native void registerNatives(); static { registerNatives(); } }
是個native方法,那么我們去看看內部實現是什么,具體的目錄是openjdk/jdk/src/share/native/java/lang/Thread.c, 下載地址
#define ARRAY_LENGTH(a) (sizeof(a)/sizeof(a[0])) //JVM前綴開頭的方法,具體實現在JVM中 static JNINativeMethod methods[] = { {"start0", "()V", (void *)&JVM_StartThread}, {"stop0", "(" OBJ ")V", (void *)&JVM_StopThread}, {"isAlive", "()Z", (void *)&JVM_IsThreadAlive}, {"suspend0", "()V", (void *)&JVM_SuspendThread}, {"resume0", "()V", (void *)&JVM_ResumeThread}, {"setPriority0", "(I)V", (void *)&JVM_SetThreadPriority}, {"yield", "()V", (void *)&JVM_Yield}, {"sleep", "(J)V", (void *)&JVM_Sleep}, {"currentThread", "()" THD, (void *)&JVM_CurrentThread}, {"countStackFrames", "()I", (void *)&JVM_CountStackFrames}, {"interrupt0", "()V", (void *)&JVM_Interrupt}, {"isInterrupted", "(Z)Z", (void *)&JVM_IsInterrupted}, {"holdsLock", "(" OBJ ")Z", (void *)&JVM_HoldsLock}, {"getThreads", "()[" THD, (void *)&JVM_GetAllThreads}, {"dumpThreads", "([" THD ")[[" STE, (void *)&JVM_DumpThreads}, {"setNativeName", "(" STR ")V", (void *)&JVM_SetNativeThreadName}, }; #undef THD #undef OBJ #undef STE #undef STR //jclass cls即為java.lang.Thread JNIEXPORT void JNICALL Java_java_lang_Thread_registerNatives(JNIEnv *env, jclass cls) { (*env)->RegisterNatives(env, cls, methods, ARRAY_LENGTH(methods)); }
可以發現具體的實現都是由這些JVM開頭的方法決定的,而這幾個方法的具體實現都在hotspotsrcsharevmprimsjvm.cpp文件中,而RegisterNatives我目前的理解其實類似一個方法表,從Java方法到native方法的一個映射,具體的原理后面再研究。
初始化Thread對象其實就是一些賦值,名字、線程ID這些,這兩個變量都是static,用synchronized修飾,保證線程安全性。
public Thread() { //nextThreadNum就是變量的自增,用synchronized修飾保證可見性 init(null, null, "Thread-" + nextThreadNum(), 0); } private void init(ThreadGroup g, Runnable target, String name, long stackSize) { init(g, target, name, stackSize, null); } private void init(ThreadGroup g, Runnable target, String name, long stackSize, AccessControlContext acc) { if (name == null) { throw new NullPointerException("name cannot be null"); } this.name = name; Thread parent = currentThread(); // 安全相關的一坨東西.... /* Stash the specified stack size in case the VM cares */ this.stackSize = stackSize; /* Set thread ID */ tid = nextThreadID(); } private static synchronized long nextThreadID() { return ++threadSeqNumber; }創建并啟動線程
public synchronized void start() { if (threadStatus != 0) throw new IllegalThreadStateException(); group.add(this); boolean started = false; try { start0(); started = true; } finally { try { if (!started) { group.threadStartFailed(this); } } catch (Throwable ignore) { /* do nothing. If start0 threw a Throwable then it will be passed up the call stack */ } } }
這里start0()是個native方法,對應jvm.cpp中的JVM_StartThread,我們看到很多方法都是JVM_ENTRY開頭,JVM_END結尾,類似于{}的作用,這里是將很多公共的操作封裝到了JVM_ENTRY里面.
JVM_ENTRY(void, JVM_StartThread(JNIEnv* env, jobject jthread)) JVMWrapper("JVM_StartThread"); JavaThread *native_thread = NULL; // We cannot hold the Threads_lock when we throw an exception, // due to rank ordering issues. Example: we might need to grab the // Heap_lock while we construct the exception. bool throw_illegal_thread_state = false; // We must release the Threads_lock before we can post a jvmti event // in Thread::start. { // 加鎖 MutexLocker mu(Threads_lock); // 自從JDK 5之后 java.lang.Thread#threadStatus可以用來阻止重啟一個已經啟動 // 的線程,所以這里的JavaThread通常為空。然而對于一個和JNI關聯的線程來說,在線程 // 被創建和更新他的threadStatus之前會有一個小窗口,因此必須檢查這種情況 if (java_lang_Thread::thread(JNIHandles::resolve_non_null(jthread)) != NULL) { throw_illegal_thread_state = true; } else { // We could also check the stillborn flag to see if this thread was already stopped, but // for historical reasons we let the thread detect that itself when it starts running jlong size = java_lang_Thread::stackSize(JNIHandles::resolve_non_null(jthread)); // 為C++線程結構體分配內存并創建native線程。從java取出的stack size是有符號的,因此這里 // 需要進行一次轉換,避免傳入負數導致創建一個非常大的棧。 size_t sz = size > 0 ? (size_t) size : 0; native_thread = new JavaThread(&thread_entry, sz); // At this point it may be possible that no osthread was created for the // JavaThread due to lack of memory. Check for this situation and throw // an exception if necessary. Eventually we may want to change this so // that we only grab the lock if the thread was created successfully - // then we can also do this check and throw the exception in the // JavaThread constructor. if (native_thread->osthread() != NULL) { // Note: the current thread is not being used within "prepare". native_thread->prepare(jthread); } } } if (throw_illegal_thread_state) { THROW(vmSymbols::java_lang_IllegalThreadStateException()); } assert(native_thread != NULL, "Starting null thread?"); if (native_thread->osthread() == NULL) { // No one should hold a reference to the "native_thread". delete native_thread; if (JvmtiExport::should_post_resource_exhausted()) { JvmtiExport::post_resource_exhausted( JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR | JVMTI_RESOURCE_EXHAUSTED_THREADS, "unable to create new native thread"); } THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(), "unable to create new native thread"); } Thread::start(native_thread); JVM_END
基本上這里就是先加鎖,做些檢查,然后創建JavaThread,如果創建成功的話會調用prepare(),然后是一些異常處理,沒有異常的話最后會啟動線程,那么下面我們先來看看JavaThread是如何被創建的。
JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) : Thread() #if INCLUDE_ALL_GCS , _satb_mark_queue(&_satb_mark_queue_set), _dirty_card_queue(&_dirty_card_queue_set) #endif // INCLUDE_ALL_GCS { if (TraceThreadEvents) { tty->print_cr("creating thread %p", this); } initialize();//這個方法其實就是一堆變量的初始化,不是Null就是0. _jni_attach_state = _not_attaching_via_jni; set_entry_point(entry_point); // Create the native thread itself. // %note runtime_23 os::ThreadType thr_type = os::java_thread; // 根據傳進來的entry_point判斷要創建的線程的類型。 thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread : os::java_thread; os::create_thread(this, thr_type, stack_sz); // _osthread可能是Null,因此我們耗盡了內存(太多的活躍線程)。我們需要拋出OOM,然而不能在這做,因為調用者可能 // 還持有鎖,而所有的鎖都必須在拋出異常之前被釋放。 // 代碼執行到這,線程還是suspended狀態,因為線程必須被創建者直接啟動。 } void JavaThread::initialize() { // Initialize fields // ... set_thread_state(_thread_new); // 線程的初始狀態 // ... }
JavaThreadState記錄了線程記錄了線程正在執行的代碼在哪一部分,這個信息可能會被安全點使用到(GC),最核心的有四種:
_thread_new 剛開始啟動,但還沒執行初始化代碼,更可能還在OS初始化的層面
_thread_in_native 在native代碼中
_thread_in_vm 在vm中執行
_thread_in_Java 執行在解釋或者編譯后的Java代碼中
每個狀態都會對應一個中間的轉換狀態,這些額外的中間狀態使得安全點的代碼能夠更快的處理某一線程狀態而不用掛起線程。
enum JavaThreadState { _thread_uninitialized = 0, // should never happen (missing initialization) _thread_new = 2, // just starting up, i.e., in process of being initialized _thread_new_trans = 3, // corresponding transition state (not used, included for completness) _thread_in_native = 4, // running in native code _thread_in_native_trans = 5, // corresponding transition state _thread_in_vm = 6, // running in VM _thread_in_vm_trans = 7, // corresponding transition state _thread_in_Java = 8, // running in Java or in stub code _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) _thread_blocked = 10, // blocked in vm _thread_blocked_trans = 11, // corresponding transition state _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation };
我們看到 os::create_thread(this, thr_type, stack_sz);這行代碼會去實際的創建線程,首先我們知道Java宣傳的是一次編譯,到處運行,那么究竟是怎么做到在不同的CPU、操作系統上還能夠保持良好的可移植性呢?
// 平臺相關的東東 #ifdef TARGET_OS_FAMILY_linux # include "os_linux.hpp" # include "os_posix.hpp" #endif #ifdef TARGET_OS_FAMILY_solaris # include "os_solaris.hpp" # include "os_posix.hpp" #endif #ifdef TARGET_OS_FAMILY_windows # include "os_windows.hpp" #endif #ifdef TARGET_OS_FAMILY_aix # include "os_aix.hpp" # include "os_posix.hpp" #endif #ifdef TARGET_OS_FAMILY_bsd # include "os_posix.hpp" # include "os_bsd.hpp" #endif #ifdef TARGET_OS_ARCH_linux_x86 # include "os_linux_x86.hpp" #endif #ifdef TARGET_OS_ARCH_linux_sparc # include "os_linux_sparc.hpp" #endif #ifdef TARGET_OS_ARCH_linux_zero # include "os_linux_zero.hpp" #endif #ifdef TARGET_OS_ARCH_solaris_x86 # include "os_solaris_x86.hpp" #endif #ifdef TARGET_OS_ARCH_solaris_sparc # include "os_solaris_sparc.hpp" #endif #ifdef TARGET_OS_ARCH_windows_x86 # include "os_windows_x86.hpp" #endif #ifdef TARGET_OS_ARCH_linux_arm # include "os_linux_arm.hpp" #endif #ifdef TARGET_OS_ARCH_linux_ppc # include "os_linux_ppc.hpp" #endif #ifdef TARGET_OS_ARCH_aix_ppc # include "os_aix_ppc.hpp" #endif #ifdef TARGET_OS_ARCH_bsd_x86 # include "os_bsd_x86.hpp" #endif #ifdef TARGET_OS_ARCH_bsd_zero # include "os_bsd_zero.hpp" #endif
我們看到os.hpp中有這樣一段代碼,能夠根據不同的操作系統選擇include不同的頭文件,從而將平臺相關的邏輯封裝到對應的庫文件中,我們這里以linux為例,create_thread最終會調用os_linux.cpp中的create_thread方法。
bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) { assert(thread->osthread() == NULL, "caller responsible"); // Allocate the OSThread object OSThread* osthread = new OSThread(NULL, NULL); if (osthread == NULL) { return false; } // set the correct thread state osthread->set_thread_type(thr_type); // 初始狀態為ALLOCATED,而不是INITIALIZED osthread->set_state(ALLOCATED); thread->set_osthread(osthread); // init thread attributes pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); // stack size if (os::Linux::supports_variable_stack_size()) { // 如果上層未傳遞則計算stack_size if (stack_size == 0) { //如果為compiler_thread,則分配4M,否則默認會分配1M stack_size = os::Linux::default_stack_size(thr_type); switch (thr_type) { case os::java_thread: // Java線程用ThreadStackSize,這個值可以通過-Xss指定 assert (JavaThread::stack_size_at_create() > 0, "this should be set"); stack_size = JavaThread::stack_size_at_create(); break; case os::compiler_thread: if (CompilerThreadStackSize > 0) { stack_size = (size_t)(CompilerThreadStackSize * K); break; } // else fall through: // use VMThreadStackSize if CompilerThreadStackSize is not defined case os::vm_thread: case os::pgc_thread: case os::cgc_thread: case os::watcher_thread: if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K); break; } } // 用兩者較大的那個,min_stack_allowed默認為128K stack_size = MAX2(stack_size, os::Linux::min_stack_allowed); pthread_attr_setstacksize(&attr, stack_size); } else { // let pthread_create() pick the default value. } // glibc guard page pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type)); ThreadState state; { // 檢查是否需要加鎖 bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack(); if (lock) { os::Linux::createThread_lock()->lock_without_safepoint_check(); } pthread_t tid; // Linux用于創建線程的函數,這個線程通過執行java_start來啟動,其中thread是作為java_start的參數傳遞進來的 // 具體可見手冊:http://man7.org/linux/man-pages/man3/pthread_create.3.html int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread); pthread_attr_destroy(&attr); if (ret != 0) { // 創建失敗,將_osthread置為空,還記得在jvm.cpp的JVM_StartThread中會根據_osthread是否為空來判斷 // 是否創建成功 if (PrintMiscellaneous && (Verbose || WizardMode)) { perror("pthread_create()"); } // 清理資源,并解鎖 thread->set_osthread(NULL); delete osthread; if (lock) os::Linux::createThread_lock()->unlock(); return false; } // 創建成功會將底層線程的ID保存在tid中 osthread->set_pthread_id(tid); // 等待子線程創建完成或者終止 { Monitor* sync_with_child = osthread->startThread_lock(); MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag); while ((state = osthread->get_state()) == ALLOCATED) { sync_with_child->wait(Mutex::_no_safepoint_check_flag); } } if (lock) { os::Linux::createThread_lock()->unlock(); } } // 線程的數目達到極限了 if (state == ZOMBIE) { thread->set_osthread(NULL); delete osthread; return false; } // The thread is returned suspended (in state INITIALIZED), // and is started higher up in the call chain assert(state == INITIALIZED, "race condition"); return true; }
下面我們來看看pthread_create會執行的回調函數java_start,這個方法是所有新創建的線程必走的流程。
static void *java_start(Thread *thread) { // 嘗試隨機化熱棧幀高速緩存行的索引,這有助于優化擁有相同棧幀線程去互相驅逐彼此的緩存行時,線程 // 可以是同一個JVM實例或者不同的JVM實例,這尤其有助于擁有超線程技術的處理器。 static int counter = 0; int pid = os::current_process_id(); alloca(((pid ^ counter++) & 7) * 128); ThreadLocalStorage::set_thread(thread); OSThread* osthread = thread->osthread(); Monitor* sync = osthread->startThread_lock(); // non floating stack LinuxThreads needs extra check, see above if (!_thread_safety_check(thread)) { // notify parent thread MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag); osthread->set_state(ZOMBIE); sync->notify_all(); return NULL; } // thread_id is kernel thread id (similar to Solaris LWP id) osthread->set_thread_id(os::Linux::gettid()); if (UseNUMA) { int lgrp_id = os::numa_get_group_id(); if (lgrp_id != -1) { thread->set_lgrp_id(lgrp_id); } } // initialize signal mask for this thread os::Linux::hotspot_sigmask(thread); // initialize floating point control register os::Linux::init_thread_fpu_state(); // handshaking with parent thread { MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag); // 設置為已經初始化完成,并notify父線程 osthread->set_state(INITIALIZED); sync->notify_all(); // wait until os::start_thread() while (osthread->get_state() == INITIALIZED) { sync->wait(Mutex::_no_safepoint_check_flag); } } //這里上層傳遞過來的是JavaThread,因此會調用JavaThread#run()方法 thread->run(); return 0; } void JavaThread::run() { // 初始化本地線程分配緩存(TLAB)相關的屬性 this->initialize_tlab(); // used to test validitity of stack trace backs this->record_base_of_stack_pointer(); // Record real stack base and size. this->record_stack_base_and_size(); // Initialize thread local storage; set before calling MutexLocker this->initialize_thread_local_storage(); this->create_stack_guard_pages(); this->cache_global_variables(); // 將線程的狀態更改為_thread_in_vm,線程已經可以被VM中的安全點相關的代碼處理了,也就是說必須 // JVM如果線程在執行native里面的代碼,是搞不了安全點的,待確認 ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm); assert(JavaThread::current() == this, "sanity check"); assert(!Thread::current()->owns_locks(), "sanity check"); DTRACE_THREAD_PROBE(start, this); // This operation might block. We call that after all safepoint checks for a new thread has // been completed. this->set_active_handles(JNIHandleBlock::allocate_block()); if (JvmtiExport::should_post_thread_life()) { JvmtiExport::post_thread_start(this); } EventThreadStart event; if (event.should_commit()) { event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj())); event.commit(); } // We call another function to do the rest so we are sure that the stack addresses used // from there will be lower than the stack base just computed thread_main_inner(); // Note, thread is no longer valid at this point! } void JavaThread::thread_main_inner() { assert(JavaThread::current() == this, "sanity check"); assert(this->threadObj() != NULL, "just checking"); // Execute thread entry point unless this thread has a pending exception // or has been stopped before starting. // Note: Due to JVM_StopThread we can have pending exceptions already! if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) { { ResourceMark rm(this); this->set_native_thread_name(this->get_thread_name()); } HandleMark hm(this); // 這個entry_point就是JVM_StartThread中傳遞過來的那個,也就是thread_entry this->entry_point()(this, this); } DTRACE_THREAD_PROBE(stop, this); this->exit(false); delete this; }
我們最后再看thread_entry的代碼
static void thread_entry(JavaThread* thread, TRAPS) { HandleMark hm(THREAD); Handle obj(THREAD, thread->threadObj()); JavaValue result(T_VOID); JavaCalls::call_virtual(&result, obj, KlassHandle(THREAD, SystemDictionary::Thread_klass()), vmSymbols::run_method_name(), vmSymbols::void_method_signature(), THREAD); }
vmSymbols,這個是JVM對于那些需要特殊處理的類、方法等的聲明,我的理解就是一個方法表,根據下面這行代碼可以看出來,其實調用的就是run()方法.
/* common method and field names */ template(run_method_name, "run")
然后我們回到JVM_StartThread方法中,這里會接著調用prepare()方法,設置線程優先級(將Java中的優先級映射到os中),然后添加到線程隊列中去.最后會調用Thread::start(native_thread);
啟動線程。
void Thread::start(Thread* thread) { trace("start", thread); // start和resume不一樣,start被synchronized修飾 if (!DisableStartThread) { if (thread->is_Java_thread()) { // 在啟動線程之前初始化線程的狀態為RUNNABLE,為啥不能在之后設置呢?因為啟動之后可能是 // 等待或者睡眠等其他狀態,具體是什么我們不知道 java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(), java_lang_Thread::RUNNABLE); } os::start_thread(thread); } }總結
一個Java線程對應一個JavaThread->OSThread -> Native Thread
在調用java.lang.Thread#start()方法之前不會啟動線程,僅僅調用run()方法只是會在當前線程運行而已
//todo
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/70152.html
摘要:為了減少在中創建的字符串的數量,字符串類維護了一個字符串常量池。但是當執行了方法后,將指向字符串常量池中的那個字符串常量。由于和都是字符串常量池中的字面量的引用,所以。究其原因,是因為常量池要保存的是已確定的字面量值。 String,是Java中除了基本數據類型以外,最為重要的一個類型了。很多人會認為他比較簡單。但是和String有關的面試題有很多,下面我隨便找兩道面試題,看看你能不能...
摘要:同理,若為,返回的結果若為或者,且為,返回的結果。同理,若為或者,且為,返回的結果是對象轉換基本類型的方法。看個例子根據上述規則來解析為,上式為第條上式為第條上式為,上式為第條上式為 前不久因為一個項目設計的問題,煩心了好幾天,為了不留坑擁抱強類型語言特點,還是選擇了===作為數據判斷是否相等,對于==今天來探究一下貓膩(弱類型的JavaScript的坑真的太多了,typescript...
摘要:在表單提交時,瀏覽器會自動進行一系列的校驗工作,沒有通過校驗的表單是無法提交到服務器的。而方法提交表單,會在請求中發送表單字段鍵值對。表單提交事件表單提交到服務器時,會觸發事件。 上一篇主要溫習了一下form表單的屬性和表單元素,這一片主要講解用JavaScript如何操作form。 表單操作 取值 用JavaScript操作表單,免不了會有取值賦值操作,比如有以下表單: ...
摘要:用于或元素時,將提交指定的表單示例代碼只能上傳圖片只能上傳視頻使用的屬性,是一個類型的值,或文件后綴名。在以前,要想改變表單元素外觀,需要通過其他標簽來模擬。以下點到名的表單元素,還是可以照常使用的。 做為html中最為常見,應用最廣泛的標簽之一,form常伴隨前端左右。了解更深,用的更順。 表單屬性 這個表單展示了form表單常用的屬性 屬性名 屬性值 ...
閱讀 3765·2021-09-22 15:49
閱讀 3313·2021-09-08 09:35
閱讀 1427·2019-08-30 15:55
閱讀 2330·2019-08-30 15:44
閱讀 721·2019-08-29 16:59
閱讀 1606·2019-08-29 16:16
閱讀 489·2019-08-28 18:06
閱讀 902·2019-08-27 10:55