国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

leetcode310. Minimum Height Trees

xiaoxiaozi / 596人閱讀

摘要:現(xiàn)在要求在這樣一棵生成樹中,找到生成樹的高度最低的所有根節(jié)點。然后利用鄰接表的相關(guān)屬性來判斷當(dāng)前節(jié)點是否是葉節(jié)點。度數(shù)為一的頂點就是葉節(jié)點。這里使用異或的原因是對同一個值進行兩次異或即可以回到最初值。

題目
For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1 :

Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
        |
        1
       / 
      2   3 

Output: [1]
Example 2 :

Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
       | /
        3
        |
        4
        |
        5 

Output: [3, 4]
Note:

According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

在無向圖的生成樹中,我們可以指定任何一個節(jié)點為這棵樹的根節(jié)點。現(xiàn)在要求在這樣一棵生成樹中,找到生成樹的高度最低的所有根節(jié)點。

其實,決定一棵樹的高度往往是樹中的最長路徑,只有我們選擇最長路徑的中間點才能夠盡可能減少樹的高度。那么我們?nèi)绾握业剿械闹虚g節(jié)點呢?

當(dāng)出發(fā)點只有兩個時,我們知道中間節(jié)點就是從出發(fā)點同時出發(fā),當(dāng)二者相遇或者二者只間隔一個位置是所在的點就是兩個出發(fā)點的重點。那么多個出發(fā)點也是同樣的道理,每個人從各個出發(fā)點出發(fā),最終相遇的點就是我們所要找的中間點。

這題的思路有些類似于拓?fù)渑判颍看挝覀兌紩コ腥攵葹?的點,因為這些點肯定是葉節(jié)點。然后不停的往中間走,直到剩下最后一個葉節(jié)點或是最后兩個葉節(jié)點。

  0
  |
  1
 / 
2   3

這個圖中刪除所有入度為0的點就只剩下1,因此我們知道1一定就是我們所要求的根節(jié)點

思路一:圖論

這一種解法著重強調(diào)了利用圖論中的數(shù)據(jù)結(jié)構(gòu)來解決問題。這里我們采用圖論中的鄰接表來存儲圖中的點和邊。然后利用鄰接表的相關(guān)屬性來判斷當(dāng)前節(jié)點是否是葉節(jié)點。

    public List findMinHeightTrees(int n, int[][] edges) {
        if(n==1) return Collections.singletonList(0);
        //初始化鄰接表
        List> adj = new ArrayList>();
        for(int i = 0 ; i());
        }
        for(int[] edge : edges) {
            adj.get(edge[0]).add(edge[1]);
            adj.get(edge[1]).add(edge[0]);
        }
        
        List leaves = new ArrayList();
        for(int i = 0 ; i 2) {
            n -= leaves.size();
            List newLeaves = new ArrayList<>();
            for (int i : leaves) {
                int j = adj.get(i).iterator().next();
                adj.get(j).remove(i);
                if (adj.get(j).size() == 1) newLeaves.add(j);
            }
            leaves = newLeaves;
        }
        return leaves;
    }
思路二:簡化數(shù)據(jù)結(jié)構(gòu)

這里使用degree數(shù)組存儲每個頂點的度數(shù),即連接的變數(shù)。度數(shù)為一的頂點就是葉節(jié)點。再用connected存儲每個頂點所連接的所有邊的異或值。這里使用異或的原因是對同一個值進行兩次異或即可以回到最初值。

    public List findMinHeightTrees2(int n, int[][] edges) {
        if(n==1) return Collections.singletonList(0);
        int[] connected = new int[n];
        int[] degree = new int[n];
        
        for(int[] edge : edges) {
            int v1 = edge[0];
            int v2 = edge[1];
            connected[v1] ^= v2;
            connected[v2] ^= v1;
            
            degree[v1]++;
            degree[v2]++;
        }
        
        LinkedList queue = new LinkedList();
        for(int i = 0 ; i 2 && !queue.isEmpty()) {
            int size = queue.size();
            for(int i = 0 ; i result = new ArrayList();
        result.addAll(queue);
        return result;
    }


想要了解更多開發(fā)技術(shù),面試教程以及互聯(lián)網(wǎng)公司內(nèi)推,歡迎關(guān)注我的微信公眾號!將會不定期的發(fā)放福利哦~

文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/72303.html

相關(guān)文章

  • Leetcode 310. Minimum Height Trees

    摘要:可以從頭邊同時進行,查看葉子節(jié)點并加入到葉子節(jié)點鏈表遍歷一遍后,葉子節(jié)點鏈表為。將葉子節(jié)點保存下來。這個時候就會有第二層葉子節(jié)點那些在列表當(dāng)中為的點,用同樣的方法進行剝除。最后留在葉子節(jié)點里面的點即可以為根。 題目: For a undirected graph with tree characteristics, we can choose any node as the root...

    xuxueli 評論0 收藏0
  • Minimum Height Trees

    摘要:題目鏈接圖的題,和差不多。來解,每次放入只有一個的現(xiàn)在的。然后直到只剩最上面一層。注意考慮單獨的和別的不相連。比如這種情況,就有三個點都不和別的相連。還有的時候就要返回。 Minimum Height Trees 題目鏈接:https://leetcode.com/problems... 圖的題,和course schedule差不多。bfs來解,每次放入只有一個edge的node(現(xiàn)...

    joyqi 評論0 收藏0
  • [LeetCode] 675. Cut Off Trees for Golf Event

    Problem You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-negative 2D map, in this map: 0 represents the obstacle cant be reached.1 represents the ground ...

    MudOnTire 評論0 收藏0
  • [LeetCode] 253. Meeting Rooms II

    Problem Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si < ei), find the minimum number of conference rooms required. Example 1: Input: [[0, 30],[5,...

    mengera88 評論0 收藏0
  • [LeetCode] 96. Unique Binary Search Trees I &

    Unique Binary Search Trees Problem Given n, how many structurally unique BSTs (binary search trees) that store values 1...n? Example Given n = 3, there are a total of 5 unique BSTs. 1 3 3...

    nidaye 評論0 收藏0

發(fā)表評論

0條評論

最新活動
閱讀需要支付1元查看
<