国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專(zhuān)欄INFORMATION COLUMN

[LeetCode] 797. All Paths From Source to Target

xiaochao / 867人閱讀

Problem

Given a directed, acyclic graph of N nodes. Find all possible paths from node 0 to node N-1, and return them in any order.

The graph is given as follows: the nodes are 0, 1, ..., graph.length - 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.

Example:

Input: [[1,2], [3], [3], []] 
Output: [[0,1,3],[0,2,3]] 
Explanation: The graph looks like this:
0--->1
|    |
v    v
2--->3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.

Note:

The number of nodes in the graph will be in the range [2, 15].
You can print different paths in any order, but you should keep the order of nodes inside one path.

Solution - DFS
class Solution {
    public List> allPathsSourceTarget(int[][] graph) {
        List> res = new ArrayList<>();
        List temp = new ArrayList<>();
        int firstNode = 0;
        temp.add(firstNode);
        dfs(graph, firstNode, temp, res);
        return res;
    }
    
    private void dfs(int[][] graph, int node, List temp, List> res) {
        if (node == graph.length-1) {
            res.add(new ArrayList<>(temp));
            return;
        }
        for (int neighbor: graph[node]) {
            temp.add(neighbor);
            dfs(graph, neighbor, temp, res);
            temp.remove(temp.size()-1);
        }
    }
}
Solution - BFS
class Solution {
    public List> allPathsSourceTarget(int[][] graph) {
        int n = graph.length;
        List> res = new ArrayList<>();
        Deque> queue = new ArrayDeque<>();
        queue.offer(Arrays.asList(0));
        
        while (!queue.isEmpty()) {
            List cur = queue.poll();
            int size = cur.size();
            if (cur.get(size-1) == n-1) {
                res.add(cur);
                continue;
            }
            
            for (int node: graph[cur.get(size-1)]) {
                List next = new ArrayList<>(cur);
                next.add(node);
                queue.offer(next);
            }
        }
        
        return res;
    }
}

文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請(qǐng)注明本文地址:http://m.specialneedsforspecialkids.com/yun/72397.html

相關(guān)文章

  • 【算法】劍指 Offer II 110. 所有路徑|797. 所有可能的路徑(多語(yǔ)言實(shí)現(xiàn))

    摘要:遍歷路徑,找到所有可以到達(dá)終點(diǎn)節(jié)點(diǎn)的路徑就是結(jié)果。提示中說(shuō)保證輸入為有向無(wú)環(huán)圖,所以我們可以認(rèn)為節(jié)點(diǎn)間一定有著某種排列的順序,從頭到尾怎樣可以有最多的路徑呢,那就是在保證沒(méi)有環(huán)路的情況下,所有節(jié)點(diǎn)都盡可能多的連接著其他節(jié)點(diǎn)。 ...

    wangdai 評(píng)論0 收藏0
  • [Leetcode] Path Sum I & II & III 路徑和1,2,3

    摘要:只要我們能夠有一個(gè)以某一中間路徑和為的哈希表,就可以隨時(shí)判斷某一節(jié)點(diǎn)能否和之前路徑相加成為目標(biāo)值。 最新更新請(qǐng)見(jiàn):https://yanjia.me/zh/2019/01/... Path Sum I Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that addin...

    caiyongji 評(píng)論0 收藏0
  • leetcode-120-Triangle-等腰三角形

    摘要:題目示例題目解析此題是等腰三角形,上下之間的關(guān)系簡(jiǎn)化為上下相鄰的三個(gè)數(shù),相鄰,大小關(guān)系是在下方二選一上方的數(shù)值,必然正確。根據(jù)此思路,可以或者,由于可以簡(jiǎn)化,所以動(dòng)態(tài)規(guī)劃方法。代碼普通代碼,較慢動(dòng)態(tài)規(guī)劃,簡(jiǎn)練 題目: Given a triangle, find the minimum path sum from top to bottom. Each step you may mov...

    MarvinZhang 評(píng)論0 收藏0
  • 基于 TypeScript 開(kāi)發(fā) NPM 模塊

    摘要:初始化項(xiàng)目添加開(kāi)發(fā)基礎(chǔ)包添加添加測(cè)試工具添加初始化配置這會(huì)在你的項(xiàng)目根目錄新建一個(gè)文件現(xiàn)在的目錄結(jié)構(gòu)如下文件解析這是的配置文件,默認(rèn)僅啟用了幾項(xiàng),我一般的配置如下添加了幾條添加文件內(nèi) 初始化 NPM 項(xiàng)目 mkdir project-name cd project-name npm init 添加開(kāi)發(fā)基礎(chǔ)包 添加 TypeScript yarn add typescript -D 添加...

    songjz 評(píng)論0 收藏0
  • [Leetcode-Tree] Path Sum I II III

    摘要:解題思路利用遞歸,對(duì)于每個(gè)根節(jié)點(diǎn),只要左子樹(shù)和右子樹(shù)中有一個(gè)滿(mǎn)足,就返回每次訪問(wèn)一個(gè)節(jié)點(diǎn),就將該節(jié)點(diǎn)的作為新的進(jìn)行下一層的判斷。代碼解題思路本題的不同點(diǎn)是可以不從開(kāi)始,不到結(jié)束。代碼當(dāng)前節(jié)點(diǎn)開(kāi)始當(dāng)前節(jié)點(diǎn)左節(jié)點(diǎn)開(kāi)始當(dāng)前節(jié)點(diǎn)右節(jié)點(diǎn)開(kāi)始 Path SumGiven a binary tree and a sum, determine if the tree has a root-to-lea...

    notebin 評(píng)論0 收藏0

發(fā)表評(píng)論

0條評(píng)論

最新活動(dòng)
閱讀需要支付1元查看
<