国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

高效隨機(jī)數(shù)算法Java實現(xiàn)

baukh789 / 491人閱讀

摘要:初遇梅森旋轉(zhuǎn)算法后面咨詢了網(wǎng)友后得知了一個高效的隨機(jī)數(shù)算法梅森旋轉(zhuǎn)。通過搜索資料得知梅森旋轉(zhuǎn)算法是一個偽隨機(jī)數(shù)發(fā)生算法。可以快速產(chǎn)生高質(zhì)量的偽隨機(jī)數(shù),修正了古典隨機(jī)數(shù)發(fā)生算法的很多缺陷。

前言

事情起源于一位網(wǎng)友分享了一個有趣的面試題:

生成由六位數(shù)字組成的ID,要求隨機(jī)數(shù)字,不排重,不可自增,且數(shù)字不重復(fù)。ID總數(shù)為幾十萬。
初次解答

我一開始想到的辦法是

生成一個足夠大的ID池(其實就是需要多少就生成多少)

對ID池中的數(shù)字進(jìn)行隨機(jī)排序

依次消費(fèi)ID池中的數(shù)字

可惜這個方法十分浪費(fèi)空間,且性能很差。

初遇梅森旋轉(zhuǎn)算法

后面咨詢了網(wǎng)友后得知了一個高效的隨機(jī)數(shù)算法:梅森旋轉(zhuǎn)(Mersenne Twister/MT)。通過搜索資料得知:

梅森旋轉(zhuǎn)算法(Mersenne twister)是一個偽隨機(jī)數(shù)發(fā)生算法。由松本真和西村拓士在1997年開發(fā),基于有限二進(jìn)制字段上的矩陣線性遞歸。可以快速產(chǎn)生高質(zhì)量的偽隨機(jī)數(shù),修正了古典隨機(jī)數(shù)發(fā)生算法的很多缺陷。

最為廣泛使用Mersenne Twister的一種變體是MT19937,可以產(chǎn)生32位整數(shù)序列。

PS:此算法依然無法完美解決面試題,但是也算學(xué)到了新知識

MT19937算法實現(xiàn)

后面通過Google,找到了一個高效的MT19937的Java版本代碼。原代碼鏈接為http://www.math.sci.hiroshima...

import java.util.Random;

/**
 * MT19937的Java實現(xiàn)
 */
public class MTRandom extends Random {
    
    // Constants used in the original C implementation
    private final static int UPPER_MASK = 0x80000000;
    private final static int LOWER_MASK = 0x7fffffff;

    private final static int N = 624;
    private final static int M = 397;
    private final static int MAGIC[] = { 0x0, 0x9908b0df };
    private final static int MAGIC_FACTOR1 = 1812433253;
    private final static int MAGIC_FACTOR2 = 1664525;
    private final static int MAGIC_FACTOR3 = 1566083941;
    private final static int MAGIC_MASK1   = 0x9d2c5680;
    private final static int MAGIC_MASK2   = 0xefc60000;
    private final static int MAGIC_SEED    = 19650218;
    private final static long DEFAULT_SEED = 5489L;

    // Internal state
    private transient int[] mt;
    private transient int mti;
    private transient boolean compat = false;

    // Temporary buffer used during setSeed(long)
    private transient int[] ibuf;

    /**
     * The default constructor for an instance of MTRandom.  This invokes
     * the no-argument constructor for java.util.Random which will result
     * in the class being initialised with a seed value obtained by calling
     * System.currentTimeMillis().
     */
    public MTRandom() { }

    /**
     * This version of the constructor can be used to implement identical
     * behaviour to the original C code version of this algorithm including
     * exactly replicating the case where the seed value had not been set
     * prior to calling genrand_int32.
     * 

* If the compatibility flag is set to true, then the algorithm will be * seeded with the same default value as was used in the original C * code. Furthermore the setSeed() method, which must take a 64 bit * long value, will be limited to using only the lower 32 bits of the * seed to facilitate seamless migration of existing C code into Java * where identical behaviour is required. *

* Whilst useful for ensuring backwards compatibility, it is advised * that this feature not be used unless specifically required, due to * the reduction in strength of the seed value. * * @param compatible Compatibility flag for replicating original * behaviour. */ public MTRandom(boolean compatible) { super(0L); compat = compatible; setSeed(compat?DEFAULT_SEED:System.currentTimeMillis()); } /** * This version of the constructor simply initialises the class with * the given 64 bit seed value. For a better random number sequence * this seed value should contain as much entropy as possible. * * @param seed The seed value with which to initialise this class. */ public MTRandom(long seed) { super(seed); } /** * This version of the constructor initialises the class with the * given byte array. All the data will be used to initialise this * instance. * * @param buf The non-empty byte array of seed information. * @throws NullPointerException if the buffer is null. * @throws IllegalArgumentException if the buffer has zero length. */ public MTRandom(byte[] buf) { super(0L); setSeed(buf); } /** * This version of the constructor initialises the class with the * given integer array. All the data will be used to initialise * this instance. * * @param buf The non-empty integer array of seed information. * @throws NullPointerException if the buffer is null. * @throws IllegalArgumentException if the buffer has zero length. */ public MTRandom(int[] buf) { super(0L); setSeed(buf); } // Initializes mt[N] with a simple integer seed. This method is // required as part of the Mersenne Twister algorithm but need // not be made public. private final void setSeed(int seed) { // Annoying runtime check for initialisation of internal data // caused by java.util.Random invoking setSeed() during init. // This is unavoidable because no fields in our instance will // have been initialised at this point, not even if the code // were placed at the declaration of the member variable. if (mt == null) mt = new int[N]; // ---- Begin Mersenne Twister Algorithm ---- mt[0] = seed; for (mti = 1; mti < N; mti++) { mt[mti] = (MAGIC_FACTOR1 * (mt[mti-1] ^ (mt[mti-1] >>> 30)) + mti); } // ---- End Mersenne Twister Algorithm ---- } /** * This method resets the state of this instance using the 64 * bits of seed data provided. Note that if the same seed data * is passed to two different instances of MTRandom (both of * which share the same compatibility state) then the sequence * of numbers generated by both instances will be identical. *

* If this instance was initialised in "compatibility" mode then * this method will only use the lower 32 bits of any seed value * passed in and will match the behaviour of the original C code * exactly with respect to state initialisation. * * @param seed The 64 bit value used to initialise the random * number generator state. */ public final synchronized void setSeed(long seed) { if (compat) { setSeed((int)seed); } else { // Annoying runtime check for initialisation of internal data // caused by java.util.Random invoking setSeed() during init. // This is unavoidable because no fields in our instance will // have been initialised at this point, not even if the code // were placed at the declaration of the member variable. if (ibuf == null) ibuf = new int[2]; ibuf[0] = (int)seed; ibuf[1] = (int)(seed >>> 32); setSeed(ibuf); } } /** * This method resets the state of this instance using the byte * array of seed data provided. Note that calling this method * is equivalent to calling "setSeed(pack(buf))" and in particular * will result in a new integer array being generated during the * call. If you wish to retain this seed data to allow the pseudo * random sequence to be restarted then it would be more efficient * to use the "pack()" method to convert it into an integer array * first and then use that to re-seed the instance. The behaviour * of the class will be the same in both cases but it will be more * efficient. * * @param buf The non-empty byte array of seed information. * @throws NullPointerException if the buffer is null. * @throws IllegalArgumentException if the buffer has zero length. */ public final void setSeed(byte[] buf) { setSeed(pack(buf)); } /** * This method resets the state of this instance using the integer * array of seed data provided. This is the canonical way of * resetting the pseudo random number sequence. * * @param buf The non-empty integer array of seed information. * @throws NullPointerException if the buffer is null. * @throws IllegalArgumentException if the buffer has zero length. */ public final synchronized void setSeed(int[] buf) { int length = buf.length; if (length == 0) throw new IllegalArgumentException("Seed buffer may not be empty"); // ---- Begin Mersenne Twister Algorithm ---- int i = 1, j = 0, k = (N > length ? N : length); setSeed(MAGIC_SEED); for (; k > 0; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * MAGIC_FACTOR2)) + buf[j] + j; i++; j++; if (i >= N) { mt[0] = mt[N-1]; i = 1; } if (j >= length) j = 0; } for (k = N-1; k > 0; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * MAGIC_FACTOR3)) - i; i++; if (i >= N) { mt[0] = mt[N-1]; i = 1; } } mt[0] = UPPER_MASK; // MSB is 1; assuring non-zero initial array // ---- End Mersenne Twister Algorithm ---- } /** * This method forms the basis for generating a pseudo random number * sequence from this class. If given a value of 32, this method * behaves identically to the genrand_int32 function in the original * C code and ensures that using the standard nextInt() function * (inherited from Random) we are able to replicate behaviour exactly. *

* Note that where the number of bits requested is not equal to 32 * then bits will simply be masked out from the top of the returned * integer value. That is to say that: *

     * mt.setSeed(12345);
     * int foo = mt.nextInt(16) + (mt.nextInt(16) << 16);
* will not give the same result as *
     * mt.setSeed(12345);
     * int foo = mt.nextInt(32);
* * @param bits The number of significant bits desired in the output. * @return The next value in the pseudo random sequence with the * specified number of bits in the lower part of the integer. */ protected final synchronized int next(int bits) { // ---- Begin Mersenne Twister Algorithm ---- int y, kk; if (mti >= N) { // generate N words at one time // In the original C implementation, mti is checked here // to determine if initialisation has occurred; if not // it initialises this instance with DEFAULT_SEED (5489). // This is no longer necessary as initialisation of the // Java instance must result in initialisation occurring // Use the constructor MTRandom(true) to enable backwards // compatible behaviour. for (kk = 0; kk < N-M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK); mt[kk] = mt[kk+M] ^ (y >>> 1) ^ MAGIC[y & 0x1]; } for (;kk < N-1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK); mt[kk] = mt[kk+(M-N)] ^ (y >>> 1) ^ MAGIC[y & 0x1]; } y = (mt[N-1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N-1] = mt[M-1] ^ (y >>> 1) ^ MAGIC[y & 0x1]; mti = 0; } y = mt[mti++]; // Tempering y ^= (y >>> 11); y ^= (y << 7) & MAGIC_MASK1; y ^= (y << 15) & MAGIC_MASK2; y ^= (y >>> 18); // ---- End Mersenne Twister Algorithm ---- return (y >>> (32-bits)); } // This is a fairly obscure little code section to pack a // byte[] into an int[] in little endian ordering. /** * This simply utility method can be used in cases where a byte * array of seed data is to be used to repeatedly re-seed the * random number sequence. By packing the byte array into an * integer array first, using this method, and then invoking * setSeed() with that; it removes the need to re-pack the byte * array each time setSeed() is called. *

* If the length of the byte array is not a multiple of 4 then * it is implicitly padded with zeros as necessary. For example: *

    byte[] { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }
* becomes *
    int[]  { 0x04030201, 0x00000605 }
*

* Note that this method will not complain if the given byte array * is empty and will produce an empty integer array, but the * setSeed() method will throw an exception if the empty integer * array is passed to it. * * @param buf The non-null byte array to be packed. * @return A non-null integer array of the packed bytes. * @throws NullPointerException if the given byte array is null. */ public static int[] pack(byte[] buf) { int k, blen = buf.length, ilen = ((buf.length+3) >>> 2); int[] ibuf = new int[ilen]; for (int n = 0; n < ilen; n++) { int m = (n+1) << 2; if (m > blen) m = blen; for (k = buf[--m]&0xff; (m & 0x3) != 0; k = (k << 8) | buf[--m]&0xff); ibuf[n] = k; } return ibuf; } }

測試 測試代碼
        // MT19937的Java實現(xiàn)
        MTRandom mtRandom=new MTRandom();
        Map map=new HashMap<>();
        //循環(huán)次數(shù)
        int times=1000000;
        long startTime=System.currentTimeMillis();
        for(int i=0;i
測試結(jié)果
times:1000000
num:999886
proportion:0.999886
time:374

文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/73325.html

相關(guān)文章

  • 算法筆試?yán)?-對數(shù)器的使用

    摘要:對于一個數(shù)組的排序,如果筆試中要求的時間復(fù)雜度是,但是你卻寫了一個冒泡排序的算法交上去了,這時就會提示而在對數(shù)器中,我們要求的絕對正確的算法是沒有時間和空間復(fù)雜度的限制的,唯一的要求是確保絕對正確。 對數(shù)器的作用 對數(shù)器是通過用大量測試數(shù)據(jù)來驗證算法是否正確的一種方式。在算法筆試的時候,我們經(jīng)常只能確定我們寫出的算法在邏輯上是大致正確的,但是誰也不能一次性保證絕對的正確。特別是對于一些...

    wyk1184 評論0 收藏0
  • 排序算法Java)——那些年面試常見的排序算法

    摘要:下面會介紹的一種排序算法快速排序甚至被譽(yù)為世紀(jì)科學(xué)和工程領(lǐng)域的十大算法之一。我們將討論比較排序算法的理論基礎(chǔ)并中借若干排序算法和優(yōu)先隊列的應(yīng)用。為了展示初級排序算法性質(zhì)的價值,我們來看一下基于插入排序的快速的排序算法希爾排序。 前言   排序就是將一組對象按照某種邏輯順序重新排列的過程。比如信用卡賬單中的交易是按照日期排序的——這種排序很可能使用了某種排序算法。在計算時代早期,大家普遍...

    Harpsichord1207 評論0 收藏0
  • 后端技術(shù)精選 - 收藏集 - 掘金

    摘要:使用簽署免費(fèi)證書后端掘金本文操作在操作系統(tǒng)下完成,需要和超文本傳輸安全協(xié)議英語,縮寫,常稱為,紅黑樹深入剖析及實現(xiàn)后端掘金紅黑樹是平衡二叉查找樹的一種。 使用 Lets Encrypt 簽署免費(fèi) Https 證書 - 后端 - 掘金 本文操作在Linux操作系統(tǒng)下完成,需要Python和Nginx 超文本傳輸安全協(xié)議(英語:Hypertext Transfer Protocol Sec...

    Meils 評論0 收藏0

發(fā)表評論

0條評論

baukh789

|高級講師

TA的文章

閱讀更多
最新活動
閱讀需要支付1元查看
<