国产xxxx99真实实拍_久久不雅视频_高清韩国a级特黄毛片_嗯老师别我我受不了了小说

資訊專欄INFORMATION COLUMN

前端面試必備——十大經(jīng)典排序算法

RebeccaZhong / 2384人閱讀

摘要:冒泡排序冒泡排序也是一種簡單直觀的排序算法。但希爾排序是非穩(wěn)定排序算法??焖倥判蛴质且环N分而治之思想在排序算法上的典型應(yīng)用。本質(zhì)上來看,快速排序應(yīng)該算是在冒泡排序基礎(chǔ)上的遞歸分治法。

冒泡排序

冒泡排序(Bubble Sort)也是一種簡單直觀的排序算法。它重復(fù)地走訪過要排序的數(shù)列,一次比較兩個(gè)元素,如果他們的順序錯(cuò)誤就把他們交換過來。走訪數(shù)列的工作是重復(fù)地進(jìn)行直到?jīng)]有再需要交換,也就是說該數(shù)列已經(jīng)排序完成。這個(gè)算法的名字由來是因?yàn)樵叫〉脑貢?huì)經(jīng)由交換慢慢“浮”到數(shù)列的頂端。

作為最簡單的排序算法之一,冒泡排序給我的感覺就像 Abandon 在單詞書里出現(xiàn)的感覺一樣,每次都在第一頁第一位,所以最熟悉。冒泡排序還有一種優(yōu)化算法,就是立一個(gè) flag,當(dāng)在一趟序列遍歷中元素沒有發(fā)生交換,則證明該序列已經(jīng)有序。但這種改進(jìn)對(duì)于提升性能來說并沒有什么太大作用。

1. 算法步驟

比較相鄰的元素。如果第一個(gè)比第二個(gè)大,就交換他們兩個(gè)。

對(duì)每一對(duì)相鄰元素作同樣的工作,從開始第一對(duì)到結(jié)尾的最后一對(duì)。這步做完后,最后的元素會(huì)是最大的數(shù)。

針對(duì)所有的元素重復(fù)以上的步驟,除了最后一個(gè)。

持續(xù)每次對(duì)越來越少的元素重復(fù)上面的步驟,直到?jīng)]有任何一對(duì)數(shù)字需要比較。

2. 動(dòng)圖演示

3. 什么時(shí)候最快

當(dāng)輸入的數(shù)據(jù)已經(jīng)是正序時(shí)(都已經(jīng)是正序了,我還要你冒泡排序有何用?。?。

4. 什么時(shí)候最慢

當(dāng)輸入的數(shù)據(jù)是反序時(shí)(寫一個(gè) for 循環(huán)反序輸出數(shù)據(jù)不就行了,干嘛要用你冒泡排序呢,我是閑的嗎)。

5. JavaScript 代碼實(shí)現(xiàn)
function bubbleSort(arr) {
    var len = arr.length;
    for (var i = 0; i < len - 1; i++) {
        for (var j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j+1]) {        // 相鄰元素兩兩對(duì)比
                var temp = arr[j+1];        // 元素交換
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}
6. Python 代碼實(shí)現(xiàn)
def bubbleSort(arr):
    for i in range(1, len(arr)):
        for j in range(0, len(arr)-i):
            if arr[j] > arr[j+1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
    return arr
7. Go 代碼實(shí)現(xiàn)
func bubbleSort(arr []int) []int {
    length := len(arr)
    for i := 0; i < length; i++ {
        for j := 0; j < length-1-i; j++ {
            if arr[j] > arr[j+1] {
                arr[j], arr[j+1] = arr[j+1], arr[j]
            }
        }
    }
    return arr
}
選擇排序

選擇排序是一種簡單直觀的排序算法,無論什么數(shù)據(jù)進(jìn)去都是 O(n2) 的時(shí)間復(fù)雜度。所以用到它的時(shí)候,數(shù)據(jù)規(guī)模越小越好。唯一的好處可能就是不占用額外的內(nèi)存空間了吧。

1. 算法步驟

首先在未排序序列中找到最?。ù螅┰兀娣诺脚判蛐蛄械钠鹗嘉恢?/p>

再從剩余未排序元素中繼續(xù)尋找最小(大)元素,然后放到已排序序列的末尾。

重復(fù)第二步,直到所有元素均排序完畢。

2. 動(dòng)圖演示

3. JavaScript 代碼實(shí)現(xiàn)
function selectionSort(arr) {
    var len = arr.length;
    var minIndex, temp;
    for (var i = 0; i < len - 1; i++) {
        minIndex = i;
        for (var j = i + 1; j < len; j++) {
            if (arr[j] < arr[minIndex]) {     // 尋找最小的數(shù)
                minIndex = j;                 // 將最小數(shù)的索引保存
            }
        }
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
    return arr;
}
4. Python 代碼實(shí)現(xiàn)
def selectionSort(arr):
    for i in range(len(arr)-1):
        for j in range(i+1, len(arr)):
            if arr[j] < arr[i]:
                arr[i], arr[j] = arr[j], arr[i]
    return arr
5. Go 代碼實(shí)現(xiàn)
func selectionSort(arr []int) []int {
    length := len(arr)
    for i := 0; i < length-1; i++ {
        min := i
        for j := i + 1; j < length; j++ {
            if arr[min] > arr[j] {
                min = j
            }
        }
        arr[i], arr[min] = arr[min], arr[i]
    }
    return arr
}
插入排序

插入排序的代碼實(shí)現(xiàn)雖然沒有冒泡排序和選擇排序那么簡單粗暴,但它的原理應(yīng)該是最容易理解的了,因?yàn)橹灰蜻^撲克牌的人都應(yīng)該能夠秒懂。插入排序是一種最簡單直觀的排序算法,它的工作原理是通過構(gòu)建有序序列,對(duì)于未排序數(shù)據(jù),在已排序序列中從后向前掃描,找到相應(yīng)位置并插入。

插入排序和冒泡排序一樣,也有一種優(yōu)化算法,叫做拆半插入。

1. 算法步驟

將第一待排序序列第一個(gè)元素看做一個(gè)有序序列,把第二個(gè)元素到最后一個(gè)元素當(dāng)成是未排序序列。

從頭到尾依次掃描未排序序列,將掃描到的每個(gè)元素插入有序序列的適當(dāng)位置。(如果待插入的元素與有序序列中的某個(gè)元素相等,則將待插入元素插入到相等元素的后面。)

2. 動(dòng)圖演示

3. JavaScript 代碼實(shí)現(xiàn)
function insertionSort(arr) {
    var len = arr.length;
    var preIndex, current;
    for (var i = 1; i < len; i++) {
        preIndex = i - 1;
        current = arr[i];
        while(preIndex >= 0 && arr[preIndex] > current) {
            arr[preIndex+1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex+1] = current;
    }
    return arr;
}
4. Python 代碼實(shí)現(xiàn)
def insertionSort(arr):
    for i in range(len(arr)):
        preIndex = i-1
        current = arr[i]
        while preIndex >= 0 and arr[preIndex] > current:
            arr[preIndex+1] = arr[preIndex]
            preIndex-=1
        arr[preIndex+1] = current
 ? ?return arr
5. Go 代碼實(shí)現(xiàn)
func insertionSort(arr []int) []int {
    for i := range arr {
        preIndex := i - 1
        current := arr[i]
        for preIndex >= 0 && arr[preIndex] > current {
            arr[preIndex+1] = arr[preIndex]
            preIndex -= 1
        }
        arr[preIndex+1] = current
    }
    return arr
}
希爾排序

希爾排序,也稱遞減增量排序算法,是插入排序的一種更高效的改進(jìn)版本。但希爾排序是非穩(wěn)定排序算法。

希爾排序是基于插入排序的以下兩點(diǎn)性質(zhì)而提出改進(jìn)方法的:

插入排序在對(duì)幾乎已經(jīng)排好序的數(shù)據(jù)操作時(shí),效率高,即可以達(dá)到線性排序的效率;

但插入排序一般來說是低效的,因?yàn)椴迦肱判蛎看沃荒軐?shù)據(jù)移動(dòng)一位;

希爾排序的基本思想是:先將整個(gè)待排序的記錄序列分割成為若干子序列分別進(jìn)行直接插入排序,待整個(gè)序列中的記錄“基本有序”時(shí),再對(duì)全體記錄進(jìn)行依次直接插入排序。

1. 算法步驟

選擇一個(gè)增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;

按增量序列個(gè)數(shù) k,對(duì)序列進(jìn)行 k 趟排序;

每趟排序,根據(jù)對(duì)應(yīng)的增量 ti,將待排序列分割成若干長度為 m 的子序列,分別對(duì)各子表進(jìn)行直接插入排序。僅增量因子為 1 時(shí),整個(gè)序列作為一個(gè)表來處理,表長度即為整個(gè)序列的長度。

2. JavaScript 代碼實(shí)現(xiàn)
function shellSort(arr) {
    var len = arr.length,
        temp,
        gap = 1;
    while(gap < len/3) {          //動(dòng)態(tài)定義間隔序列
        gap =gap*3+1;
    }
    for (gap; gap > 0; gap = Math.floor(gap/3)) {
        for (var i = gap; i < len; i++) {
            temp = arr[i];
            for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) {
                arr[j+gap] = arr[j];
            }
            arr[j+gap] = temp;
        }
    }
    return arr;
}
3. Python 代碼實(shí)現(xiàn)
def shellSort(arr):
    import math
    gap=1
    while(gap < len(arr)/3):
        gap = gap*3+1
    while gap > 0:
        for i in range(gap,len(arr)):
            temp = arr[i]
            j = i-gap
            while j >=0 and arr[j] > temp:
                arr[j+gap]=arr[j]
                j-=gap
            arr[j+gap] = temp
        gap = math.floor(gap/3)
    return arr
}
4. Go 代碼實(shí)現(xiàn)
func shellSort(arr []int) []int {
    length := len(arr)
    gap := 1
    for gap < gap/3 {
        gap = gap*3 + 1
    }
    for gap > 0 {
        for i := gap; i < length; i++ {
            temp := arr[i]
            j := i - gap
            for j >= 0 && arr[j] > temp {
                arr[j+gap] = arr[j]
                j -= gap
            }
            arr[j+gap] = temp
        }
        gap = gap / 3
    }
    return arr
}
歸并排序

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個(gè)非常典型的應(yīng)用。

作為一種典型的分而治之思想的算法應(yīng)用,歸并排序的實(shí)現(xiàn)由兩種方法:

自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);

自下而上的迭代;

和選擇排序一樣,歸并排序的性能不受輸入數(shù)據(jù)的影響,但表現(xiàn)比選擇排序好的多,因?yàn)槭冀K都是 O(nlogn) 的時(shí)間復(fù)雜度。代價(jià)是需要額外的內(nèi)存空間。

2. 算法步驟

申請(qǐng)空間,使其大小為兩個(gè)已經(jīng)排序序列之和,該空間用來存放合并后的序列;

設(shè)定兩個(gè)指針,最初位置分別為兩個(gè)已經(jīng)排序序列的起始位置;

比較兩個(gè)指針?biāo)赶虻脑?,選擇相對(duì)小的元素放入到合并空間,并移動(dòng)指針到下一位置;

重復(fù)步驟 3 直到某一指針達(dá)到序列尾;

將另一序列剩下的所有元素直接復(fù)制到合并序列尾。

3. 動(dòng)圖演示

4. JavaScript 代碼實(shí)現(xiàn)
function mergeSort(arr) {  // 采用自上而下的遞歸方法
    var len = arr.length;
    if(len < 2) {
        return arr;
    }
    var middle = Math.floor(len / 2),
        left = arr.slice(0, middle),
        right = arr.slice(middle);
    return merge(mergeSort(left), mergeSort(right));
}

function merge(left, right)
{
    var result = [];

    while (left.length && right.length) {
        if (left[0] <= right[0]) {
            result.push(left.shift());
        } else {
            result.push(right.shift());
        }
    }

    while (left.length)
        result.push(left.shift());

    while (right.length)
        result.push(right.shift());

    return result;
}
5. Python 代碼實(shí)現(xiàn)
def mergeSort(arr):
    import math
    if(len(arr)<2):
        return arr
    middle = math.floor(len(arr)/2)
    left, right = arr[0:middle], arr[middle:]
    return merge(mergeSort(left), mergeSort(right))

def merge(left,right):
    result = []
    while left and right:
        if left[0] <= right[0]:
            result.append(left.pop(0));
        else:
            result.append(right.pop(0));
    while left:
        result.append(left.pop(0));
    while right:
        result.append(right.pop(0));
    return result
6. Go 代碼實(shí)現(xiàn)
func mergeSort(arr []int) []int {
    length := len(arr)
    if length < 2 {
        return arr
    }
    middle := length / 2
    left := arr[0:middle]
    right := arr[middle:]
    return merge(mergeSort(left), mergeSort(right))
}

func merge(left []int, right []int) []int {
    var result []int
    for len(left) != 0 && len(right) != 0 {
        if left[0] <= right[0] {
            result = append(result, left[0])
            left = left[1:]
        } else {
            result = append(result, right[0])
            right = right[1:]
        }
    }

    for len(left) != 0 {
        result = append(result, left[0])
        left = left[1:]
    }

    for len(right) != 0 {
        result = append(result, right[0])
        right = right[1:]
    }

    return result
}
快速排序

快速排序是由東尼·霍爾所發(fā)展的一種排序算法。在平均狀況下,排序 n 個(gè)項(xiàng)目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況并不常見。事實(shí)上,快速排序通常明顯比其他 Ο(nlogn) 算法更快,因?yàn)樗膬?nèi)部循環(huán)(inner loop)可以在大部分的架構(gòu)上很有效率地被實(shí)現(xiàn)出來。

快速排序使用分治法(Divide and conquer)策略來把一個(gè)串行(list)分為兩個(gè)子串行(sub-lists)。

快速排序又是一種分而治之思想在排序算法上的典型應(yīng)用。本質(zhì)上來看,快速排序應(yīng)該算是在冒泡排序基礎(chǔ)上的遞歸分治法。

快速排序的名字起的是簡單粗暴,因?yàn)橐宦牭竭@個(gè)名字你就知道它存在的意義,就是快,而且效率高!它是處理大數(shù)據(jù)最快的排序算法之一了。雖然 Worst Case 的時(shí)間復(fù)雜度達(dá)到了 O(n2),但是人家就是優(yōu)秀,在大多數(shù)情況下都比平均時(shí)間復(fù)雜度為 O(n logn) 的排序算法表現(xiàn)要更好。

1. 算法步驟

從數(shù)列中挑出一個(gè)元素,稱為 “基準(zhǔn)”(pivot);

重新排序數(shù)列,所有元素比基準(zhǔn)值小的擺放在基準(zhǔn)前面,所有元素比基準(zhǔn)值大的擺在基準(zhǔn)的后面(相同的數(shù)可以到任一邊)。在這個(gè)分區(qū)退出之后,該基準(zhǔn)就處于數(shù)列的中間位置。這個(gè)稱為分區(qū)(partition)操作;

遞歸地(recursive)把小于基準(zhǔn)值元素的子數(shù)列和大于基準(zhǔn)值元素的子數(shù)列排序;

遞歸的最底部情形,是數(shù)列的大小是零或一,也就是永遠(yuǎn)都已經(jīng)被排序好了。雖然一直遞歸下去,但是這個(gè)算法總會(huì)退出,因?yàn)樵诿看蔚牡╥teration)中,它至少會(huì)把一個(gè)元素?cái)[到它最后的位置去。

2. 動(dòng)圖演示

3. JavaScript 代碼實(shí)現(xiàn)
function quickSort(arr, left, right) {
    var len = arr.length,
        partitionIndex,
        left = typeof left != "number" ? 0 : left,
        right = typeof right != "number" ? len - 1 : right;

    if (left < right) {
        partitionIndex = partition(arr, left, right);
        quickSort(arr, left, partitionIndex-1);
        quickSort(arr, partitionIndex+1, right);
    }
    return arr;
}

function partition(arr, left ,right) {     // 分區(qū)操作
    var pivot = left,                      // 設(shè)定基準(zhǔn)值(pivot)
        index = pivot + 1;
    for (var i = index; i <= right; i++) {
        if (arr[i] < arr[pivot]) {
            swap(arr, i, index);
            index++;
        }        
    }
    swap(arr, pivot, index - 1);
    return index-1;
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
functiion paritition2(arr, low, high) {
  let pivot = arr[low];
  while (low < high) {
    while (low < high && arr[high] > pivot) {
      --high;
    }
    arr[low] = arr[high];
    while (low < high && arr[low] <= pivot) {
      ++low;
    }
    arr[high] = arr[low];
  }
  arr[low] = pivot;
  return low;
}

function quickSort2(arr, low, high) {
  if (low < high) {
    let pivot = paritition2(arr, low, high);
    quickSort2(arr, low, pivot - 1);
    quickSort2(arr, pivot + 1, high);
  }
  return arr;
}
4. Python 代碼實(shí)現(xiàn)
def quickSort(arr, left=None, right=None):
    left = 0 if not isinstance(left,(int, float)) else left
    right = len(arr)-1 if not isinstance(right,(int, float)) else right
    if left < right:
        partitionIndex = partition(arr, left, right)
        quickSort(arr, left, partitionIndex-1)
        quickSort(arr, partitionIndex+1, right)
    return arr

def partition(arr, left, right):
    pivot = left
    index = pivot+1
    i = index
    while  i <= right:
        if arr[i] < arr[pivot]:
            swap(arr, i, index)
            index+=1
        i+=1
    swap(arr,pivot,index-1)
    return index-1

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]
5. Go 代碼實(shí)現(xiàn)
func quickSort(arr []int) []int {
    return _quickSort(arr, 0, len(arr)-1)
}

func _quickSort(arr []int, left, right int) []int {
    if left < right {
        partitionIndex := partition(arr, left, right)
        _quickSort(arr, left, partitionIndex-1)
        _quickSort(arr, partitionIndex+1, right)
    }
    return arr
}

func partition(arr []int, left, right int) int {
    pivot := left
    index := pivot + 1

    for i := index; i <= right; i++ {
        if arr[i] < arr[pivot] {
            swap(arr, i, index)
            index += 1
        }
    }
    swap(arr, pivot, index-1)
    return index - 1
}

func swap(arr []int, i, j int) {
    arr[i], arr[j] = arr[j], arr[i]
}
6. C++版
 //標(biāo)準(zhǔn)分割函數(shù)
 Paritition1(int A[], int low, int high) {
   int pivot = A[low];
   while (low < high) {
     while (low < high && A[high] >= pivot) {
       --high;
     }
     A[low] = A[high];
     while (low < high && A[low] <= pivot) {
       ++low;
     }
     A[high] = A[low];
   }
   A[low] = pivot;
   return low;
 }

 void QuickSort(int A[], int low, int high) //快排母函數(shù)
 {
   if (low < high) {
     int pivot = Paritition1(A, low, high); 
     QuickSort(A, low, pivot - 1);
     QuickSort(A, pivot + 1, high);
   }
 }
堆排序

堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:

大頂堆:每個(gè)節(jié)點(diǎn)的值都大于或等于其子節(jié)點(diǎn)的值,在堆排序算法中用于升序排列;

小頂堆:每個(gè)節(jié)點(diǎn)的值都小于或等于其子節(jié)點(diǎn)的值,在堆排序算法中用于降序排列;

堆排序的平均時(shí)間復(fù)雜度為 Ο(nlogn)。

1. 算法步驟

創(chuàng)建一個(gè)堆 H[0……n-1];

把堆首(最大值)和堆尾互換;

把堆的尺寸縮小 1,并調(diào)用 shift_down(0),目的是把新的數(shù)組頂端數(shù)據(jù)調(diào)整到相應(yīng)位置;

重復(fù)步驟 2,直到堆的尺寸為 1。

2. 動(dòng)圖演示

3. JavaScript 代碼實(shí)現(xiàn)
var len;    // 因?yàn)槁暶鞯亩鄠€(gè)函數(shù)都需要數(shù)據(jù)長度,所以把len設(shè)置成為全局變量

function buildMaxHeap(arr) {   // 建立大頂堆
    len = arr.length;
    for (var i = Math.floor(len/2); i >= 0; i--) {
        heapify(arr, i);
    }
}

function heapify(arr, i) {     // 堆調(diào)整
    var left = 2 * i + 1,
        right = 2 * i + 2,
        largest = i;

    if (left < len && arr[left] > arr[largest]) {
        largest = left;
    }

    if (right < len && arr[right] > arr[largest]) {
        largest = right;
    }

    if (largest != i) {
        swap(arr, i, largest);
        heapify(arr, largest);
    }
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

function heapSort(arr) {
    buildMaxHeap(arr);

    for (var i = arr.length-1; i > 0; i--) {
        swap(arr, 0, i);
        len--;
        heapify(arr, 0);
    }
    return arr;
}
4. Python 代碼實(shí)現(xiàn)
def buildMaxHeap(arr):
    import math
    for i in range(math.floor(len(arr)/2),-1,-1):
        heapify(arr,i)

def heapify(arr, i):
    left = 2*i+1
    right = 2*i+2
    largest = i
    if left < arrLen and arr[left] > arr[largest]:
        largest = left
    if right < arrLen and arr[right] > arr[largest]:
        largest = right

    if largest != i:
        swap(arr, i, largest)
        heapify(arr, largest)

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

def heapSort(arr):
    global arrLen
    arrLen = len(arr)
    buildMaxHeap(arr)
    for i in range(len(arr)-1,0,-1):
        swap(arr,0,i)
        arrLen -=1
        heapify(arr, 0)
 ? ?return arr
5. Go 代碼實(shí)現(xiàn)
func heapSort(arr []int) []int {
    arrLen := len(arr)
    buildMaxHeap(arr, arrLen)
    for i := arrLen - 1; i >= 0; i-- {
        swap(arr, 0, i)
        arrLen -= 1
        heapify(arr, 0, arrLen)
    }
    return arr
}

func buildMaxHeap(arr []int, arrLen int) {
    for i := arrLen / 2; i >= 0; i-- {
        heapify(arr, i, arrLen)
    }
}

func heapify(arr []int, i, arrLen int) {
    left := 2*i + 1
    right := 2*i + 2
    largest := i
    if left < arrLen && arr[left] > arr[largest] {
        largest = left
    }
    if right < arrLen && arr[right] > arr[largest] {
        largest = right
    }
    if largest != i {
        swap(arr, i, largest)
        heapify(arr, largest, arrLen)
    }
}

func swap(arr []int, i, j int) {
    arr[i], arr[j] = arr[j], arr[i]
}
計(jì)數(shù)排序

計(jì)數(shù)排序的核心在于將輸入的數(shù)據(jù)值轉(zhuǎn)化為鍵存儲(chǔ)在額外開辟的數(shù)組空間中。作為一種線性時(shí)間復(fù)雜度的排序,計(jì)數(shù)排序要求輸入的數(shù)據(jù)必須是有確定范圍的整數(shù)。

1. 動(dòng)圖演示

2. JavaScript 代碼實(shí)現(xiàn)
function countingSort(arr, maxValue) {
    var bucket = new Array(maxValue+1),
        sortedIndex = 0;
        arrLen = arr.length,
        bucketLen = maxValue + 1;

    for (var i = 0; i < arrLen; i++) {
        if (!bucket[arr[i]]) {
            bucket[arr[i]] = 0;
        }
        bucket[arr[i]]++;
    }

    for (var j = 0; j < bucketLen; j++) {
        while(bucket[j] > 0) {
            arr[sortedIndex++] = j;
            bucket[j]--;
        }
    }

    return arr;
}
3. Python 代碼實(shí)現(xiàn)
def countingSort(arr, maxValue):
    bucketLen = maxValue+1
    bucket = [0]*bucketLen
    sortedIndex =0
    arrLen = len(arr)
    for i in range(arrLen):
        if not bucket[arr[i]]:
            bucket[arr[i]]=0
        bucket[arr[i]]+=1
    for j in range(bucketLen):
        while bucket[j]>0:
            arr[sortedIndex] = j
            sortedIndex+=1
            bucket[j]-=1
    return arr
4. Go 代碼實(shí)現(xiàn)
func countingSort(arr []int, maxValue int) []int {
    bucketLen := maxValue + 1
    bucket := make([]int, bucketLen) // 初始為0的數(shù)組

    sortedIndex := 0
    length := len(arr)

    for i := 0; i < length; i++ {
        bucket[arr[i]] += 1
    }

    for j := 0; j < bucketLen; j++ {
        for bucket[j] > 0 {
            arr[sortedIndex] = j
            sortedIndex += 1
            bucket[j] -= 1
        }
    }

    return arr
}
桶排序

桶排序是計(jì)數(shù)排序的升級(jí)版。它利用了函數(shù)的映射關(guān)系,高效與否的關(guān)鍵就在于這個(gè)映射函數(shù)的確定。為了使桶排序更加高效,我們需要做到這兩點(diǎn):

在額外空間充足的情況下,盡量增大桶的數(shù)量

使用的映射函數(shù)能夠?qū)⑤斎氲?N 個(gè)數(shù)據(jù)均勻的分配到 K 個(gè)桶中

同時(shí),對(duì)于桶中元素的排序,選擇何種比較排序算法對(duì)于性能的影響至關(guān)重要。

1. 什么時(shí)候最快

當(dāng)輸入的數(shù)據(jù)可以均勻的分配到每一個(gè)桶中。

2. 什么時(shí)候最慢

當(dāng)輸入的數(shù)據(jù)被分配到了同一個(gè)桶中。

3. JavaScript 代碼實(shí)現(xiàn)
function bucketSort(arr, bucketSize) {
    if (arr.length === 0) {
      return arr;
    }

    var i;
    var minValue = arr[0];
    var maxValue = arr[0];
    for (i = 1; i < arr.length; i++) {
      if (arr[i] < minValue) {
          minValue = arr[i];                // 輸入數(shù)據(jù)的最小值
      } else if (arr[i] > maxValue) {
          maxValue = arr[i];                // 輸入數(shù)據(jù)的最大值
      }
    }

    //桶的初始化
    var DEFAULT_BUCKET_SIZE = 5;            // 設(shè)置桶的默認(rèn)數(shù)量為5
    bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
    var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;   
    var buckets = new Array(bucketCount);
    for (i = 0; i < buckets.length; i++) {
        buckets[i] = [];
    }

    //利用映射函數(shù)將數(shù)據(jù)分配到各個(gè)桶中
    for (i = 0; i < arr.length; i++) {
        buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
    }

    arr.length = 0;
    for (i = 0; i < buckets.length; i++) {
        insertionSort(buckets[i]);                      // 對(duì)每個(gè)桶進(jìn)行排序,這里使用了插入排序
        for (var j = 0; j < buckets[i].length; j++) {
            arr.push(buckets[i][j]);                      
        }
    }

    return arr;
}
基數(shù)排序

基數(shù)排序是一種非比較型整數(shù)排序算法,其原理是將整數(shù)按位數(shù)切割成不同的數(shù)字,然后按每個(gè)位數(shù)分別比較。由于整數(shù)也可以表達(dá)字符串(比如名字或日期)和特定格式的浮點(diǎn)數(shù),所以基數(shù)排序也不是只能使用于整數(shù)。

1. 基數(shù)排序 vs 計(jì)數(shù)排序 vs 桶排序

基數(shù)排序有兩種方法:

這三種排序算法都利用了桶的概念,但對(duì)桶的使用方法上有明顯差異:

基數(shù)排序:根據(jù)鍵值的每位數(shù)字來分配桶;

計(jì)數(shù)排序:每個(gè)桶只存儲(chǔ)單一鍵值;

桶排序:每個(gè)桶存儲(chǔ)一定范圍的數(shù)值;

2. LSD 基數(shù)排序動(dòng)圖演示

3. JavaScript 代碼實(shí)現(xiàn)
//LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
    var mod = 10;
    var dev = 1;
    for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
        for(var j = 0; j < arr.length; j++) {
            var bucket = parseInt((arr[j] % mod) / dev);
            if(counter[bucket]==null) {
                counter[bucket] = [];
            }
            counter[bucket].push(arr[j]);
        }
        var pos = 0;
        for(var j = 0; j < counter.length; j++) {
            var value = null;
            if(counter[j]!=null) {
                while ((value = counter[j].shift()) != null) {
                      arr[pos++] = value;
                }
          }
        }
    }
    return arr;
}
參考文檔

原文地址

JS-Sorting-Algorithm

MERGE SORT 動(dòng)畫演示

排序效果

常見排序算法

維基百科,自由的百科全書

文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。

轉(zhuǎn)載請(qǐng)注明本文地址:http://m.specialneedsforspecialkids.com/yun/84451.html

相關(guān)文章

  • 前端面試必備——十大經(jīng)典排序算法

    摘要:冒泡排序冒泡排序也是一種簡單直觀的排序算法。但希爾排序是非穩(wěn)定排序算法。快速排序又是一種分而治之思想在排序算法上的典型應(yīng)用。本質(zhì)上來看,快速排序應(yīng)該算是在冒泡排序基礎(chǔ)上的遞歸分治法。 冒泡排序 冒泡排序(Bubble Sort)也是一種簡單直觀的排序算法。它重復(fù)地走訪過要排序的數(shù)列,一次比較兩個(gè)元素,如果他們的順序錯(cuò)誤就把他們交換過來。走訪數(shù)列的工作是重復(fù)地進(jìn)行直到?jīng)]有再需要交換,也就...

    hover_lew 評(píng)論0 收藏0
  • 【程序員必備】知識(shí)點(diǎn) 持續(xù)更新

    TCP/IP HTTP和HTTPS有何區(qū)別? httpbin 一個(gè)簡單的HTTP請(qǐng)求和響應(yīng)服務(wù)。 TCP的三次握手與四次揮手 通俗易懂版,詳細(xì)版本 MySQL CHAR和VARCHAR存取的差別 《高性能MySQL》筆記 - MySQL 鎖的基本類型 MySQL中的鎖之一:鎖的必要性及分類 MySQL中的鎖之二:行鎖、頁鎖、表鎖 MySQL Like與Regexp的區(qū)別 數(shù)據(jù)結(jié)構(gòu) 數(shù)...

    hellowoody 評(píng)論0 收藏0
  • 【程序員必備】知識(shí)點(diǎn) 持續(xù)更新

    TCP/IP HTTP和HTTPS有何區(qū)別? httpbin 一個(gè)簡單的HTTP請(qǐng)求和響應(yīng)服務(wù)。 TCP的三次握手與四次揮手 通俗易懂版,詳細(xì)版本 MySQL CHAR和VARCHAR存取的差別 《高性能MySQL》筆記 - MySQL 鎖的基本類型 MySQL中的鎖之一:鎖的必要性及分類 MySQL中的鎖之二:行鎖、頁鎖、表鎖 MySQL Like與Regexp的區(qū)別 數(shù)據(jù)結(jié)構(gòu) 數(shù)...

    zhjx922 評(píng)論0 收藏0
  • 十大經(jīng)典排序算法總結(jié)(Javascript描述)

    摘要:算法描述冒泡排序是一種簡單的排序算法。算法描述和實(shí)現(xiàn)一般來說,插入排序都采用在數(shù)組上實(shí)現(xiàn)。平均情況希爾排序年發(fā)明第一個(gè)突破的排序算法是簡單插入排序的改進(jìn)版它與插入排序的不同之處在于,它會(huì)優(yōu)先比較距離較遠(yuǎn)的元素。 前言 讀者自行嘗試可以想看源碼戳這,博主在github建了個(gè)庫,讀者可以Clone下來本地嘗試。此博文配合源碼體驗(yàn)更棒哦~~~ 個(gè)人博客:Damonare的個(gè)人博客 原文地址:...

    Binguner 評(píng)論0 收藏0

發(fā)表評(píng)論

0條評(píng)論

最新活動(dòng)
閱讀需要支付1元查看
<