回答:這個太范化了吧。大數據架構選擇的方案就有很多,海量數據的即席查詢本省就是業內目前的痛點,暫時沒有太好的解決方案,kylin等框架也只是一個折中方案,如果你不是要求海量數據分析的秒級響應的話sparkSql、presto等都是不錯的方案,分鐘級別可以返回。
回答:目前階段大數據技術及體系已經逐漸趨于成熟,不再是以概念貫穿的模式,大數據越來越多的被使用,伴隨互聯網化的發展更多的企業信息化已經由IT時代轉變為DT時代,以數據為核心,用數據進行決策,基于數據驅動企業的創新與發展,相信在將來大數據也會有更廣泛的應用空間,對于大數據的理解主要分為以下幾個層面。1.數據來源:對于大數據時代而言更多強調基于業務數據的沉淀,在一定規模的數據上進行進一步的分析、處理、轉換,...
回答:在大數據領域大概有四個大的工作方向,除了大數據平臺應用及開發、大數據分析與應用和大數據平臺集成與運維之外,還有大數據平臺架構與研發,除了以上四個大的工作方向之外,還有一個工作方向是大數據技術推廣和培訓,這部分工作目前也有不少人在從事。大數據平臺架構與研發主要的工作內容是研發底層的大數據平臺,這部分工作的難度較高,從事這部分工作的研發級崗位也并不多。現在不少技術研發團隊都以Hadoop、Spark平...
回答:近幾年,大數據的概念逐漸深入人心,大數據的趨勢越來越火爆。但是,大數據到底是個啥?怎么樣才能玩好大數據呢?大數據的基本含義就是海量數據,麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統數據庫軟件工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特征。數字經濟的要素之一就是大數據資源,現在大家聊得最多的大數據是基于已經存在的...
回答:隨著大數據應用的逐漸落地,很多人都想從事大數據方面的工作,這其中自然就有很多非大數據相關專業(數學、計算機、統計學)的從業者,那么大數據到底能不能從零基礎開始學呢?答案是肯定的,但是也要根據自身的知識結構來選擇大數據的學習方向。大數據技術體系在2016年的時候已經趨于成熟,目前正處在落地應用的階段,大數據的細分崗位比較多,自然也就需要具備不同的知識結構。大數據的崗位集中在數據采集、整理、存儲、分析...
回答:大數據是處理海量數據的一種技術,你說的寫SQL只能處理結構化數據,更多的是非結構化數據(文本數據),和半結構化數據。并且通過SQL處理的數據量一般很少,幾個T就根本不行,大數據涉及存儲(存儲級別為PB級別),資源調度(一般是分布式系統,不是一臺機器),計算框架(hadoop;storm;spark)這三部分,缺一不可,你說的寫SQL只是相當于計算框架(勉強算得上,性能差遠了)。
...據的應用00 影視劇的投拍01 谷歌預測流感03 新冠疫情地區分布圖 1.4 大數據的關鍵技術00 大數據技術的層次02 大數據計算模式? 1.5 大數據與云計算、物聯網的關系00 云計算01 物聯網 1.6 小結 1.1 大數據時代 00 簡要介紹 大數據...
...持服務異常終止時自動拉起;提供豐富的監控模板,涵蓋服務器監控及大數據服務監控等;支持監控模板規則自定義;支持通知組、通知對象管理;支持郵件、微信、釘釘、回調函數等多種告警通知方式;支持控制臺與系統配置...
摘要: 2018第九屆中國數據庫技術大會,阿里云高級技術專家、架構師封神(曹龍)帶來題為大數據時代數據庫-云HBase架構&生態&實踐的演講。主要內容有三個方面:首先介紹了業務挑戰帶來的架構演進,其次分析了ApsaraDB HBas...
...儲、計算、分析。 而現在我們有足夠的空間、可以構建服務器集群進行龐大數據處理,就可以做全樣的數據分析。效率而非精確 之前在做抽樣統計時,需要不斷提高算法精度,因為抽樣計算的結果誤差放到全樣上會被放大,容...
...臺系統架構相對簡單,元數據與內容數據均可使用SequoiaDB服務器的本地磁盤存放,不再需要額外購買昂貴的外部存儲設備,節省企業的開發和運維成本。 SequoiaDB的塊存儲字段類型叫做LOB(Large OBject,大對象),其核心機制是將...
...;和在超融合部署方式在集群規模較大后,網絡、硬盤、服務器發生故障的概率都會增大;以及數據重刪、壓縮、加密糾刪碼等功能、故障的自修復和數據功能實現都會消耗一定的系統資源,導致性能下降和抖動等問題。分離式...
ChatGPT和Sora等AI大模型應用,將AI大模型和算力需求的熱度不斷帶上新的臺階。哪里可以獲得...
大模型的訓練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關性能圖表。同時根據訓練、推理能力由高到低做了...