回答:各有各的說法,對(duì)于教練來說,體能課可以無止境的練下去,對(duì)于學(xué)員來說就是無止境的花錢!新手就算天天帶,也至少需要幾個(gè)月才能獨(dú)自開始舉鐵,更別說教練根本就不樂意讓你獨(dú)立!都是利益鬧的!很慶幸我碰到了個(gè)真心想教的教練!
回答:大家好,我們以java排序算法為例,來看看面試中常見的算法第一、基數(shù)排序算法該算法將數(shù)值按照個(gè)位數(shù)拆分進(jìn)行位數(shù)比較,具體代碼如下:第二、桶排序算法該算法將數(shù)值序列分成最大值+1個(gè)桶子,然后遞歸將數(shù)值塞進(jìn)對(duì)應(yīng)值的桶里,具體代碼如下:第三、計(jì)數(shù)排序算法該算法計(jì)算數(shù)值序列中每個(gè)數(shù)值出現(xiàn)的次數(shù),然后存放到單獨(dú)的數(shù)組中計(jì)數(shù)累加,具體代碼如下:第四、堆排序算法該算法將數(shù)值序列中最大值挑選出來,然后通過遞歸將剩...
回答:我們已經(jīng)上線了好幾個(gè).net core的項(xiàng)目,基本上都是docker+.net core 2/3。說實(shí)話,.net core的GC非常的優(yōu)秀,基本上不需要像做Java時(shí)候,還要做很多的優(yōu)化。因此沒有多少人研究很正常。換句話,如果一個(gè)GC還要做很多優(yōu)化,這肯定不是好的一個(gè)GC。當(dāng)然平時(shí)編程的時(shí)候,常用的非托管的對(duì)象處理等等還是要必須掌握的。
回答:后臺(tái)不等于內(nèi)核開發(fā),但了解內(nèi)核肯定有助于后臺(tái)開發(fā),內(nèi)核集精ucloud大成,理解內(nèi)核精髓,你就離大咖不遠(yuǎn)了。程序邏輯抽取器支持c/c++/esqlc,數(shù)據(jù)庫支持oracle/informix/mysql,讓你輕松了解程序干了什么。本站正在舉辦注解內(nèi)核贏工具活動(dòng),你對(duì)linux kernel的理解可以傳遞給她人。
回答:這幾天我也是因?yàn)橐粋€(gè)項(xiàng)目而被迫使用vue,坦白的說vue和傳統(tǒng)的網(wǎng)站開發(fā)思路不同,導(dǎo)致愛的人愛死,老程序員煩死的現(xiàn)狀。主要區(qū)別:1傳統(tǒng)方式:我們做一個(gè)網(wǎng)站,首先創(chuàng)建幾個(gè)文件夾(css、js等等),頁面需要用的資源文件,都放到各自的文件夾里。然后創(chuàng)建若干個(gè)HTML網(wǎng)頁,一個(gè)個(gè)鏈接把這些若干網(wǎng)頁串起來就OK,網(wǎng)頁里需要有什么事件或效果,要么用原生js要么用jqurey,去操作某個(gè)dom,實(shí)現(xiàn)頁面變化。...
回答:底層的算法很多都是C,C++實(shí)現(xiàn)的,效率高。上層調(diào)用很多是Python實(shí)現(xiàn)的,主要是Python表達(dá)更簡(jiǎn)潔,容易。
摘要:深度學(xué)習(xí)是一類新興的多層神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法。因其緩解了傳統(tǒng)訓(xùn)練算法的局部最小性, 引起機(jī)器學(xué)習(xí)領(lǐng)域的廣泛關(guān)注。首先論述了深度學(xué)習(xí)興起淵源, 分析了算法的優(yōu)越性, 并介紹了主流學(xué)習(xí)算法及應(yīng)用現(xiàn)狀,最后...
...擊,我們通過白盒測(cè)試和黑盒測(cè)試, 描述了任務(wù)和訓(xùn)練算法中體現(xiàn)的脆弱程度。 無論是學(xué)習(xí)任務(wù)還是訓(xùn)練算法,我們都觀測(cè)到了性能的顯著下降,即使對(duì)抗干擾微小到無法被人類察覺的程度。深度學(xué)習(xí)和深度強(qiáng)化學(xué)習(xí)最近的進(jìn)...
...開發(fā)全生命周期中,從原始數(shù)據(jù)、標(biāo)注數(shù)據(jù)、訓(xùn)練作業(yè)、算法、模型、推理服務(wù)等,提供全流程可視化管理。支持千萬級(jí)模型、數(shù)據(jù)集以及服務(wù)等對(duì)象的管理,無需人工干預(yù),自動(dòng)生成溯源圖,選擇任一模型就可以找到對(duì)應(yīng)的數(shù)...
...,這個(gè)映射函數(shù)通常也被叫做目標(biāo)函數(shù)。 任何機(jī)器學(xué)習(xí)算法的預(yù)測(cè)誤差可以分解為三部分,即:偏差誤差+方差誤差+不可約的誤差(對(duì)于給定的模型,我們不能進(jìn)一步減少的誤差)。在這個(gè)文章中,我們將重點(diǎn)來討論機(jī)器學(xué)習(xí)中...
...閱讀目錄1. 神經(jīng)元模型2. 感知機(jī)和神經(jīng)網(wǎng)絡(luò)3. 誤差逆?zhèn)鞑ニ惴?. 常見的神經(jīng)網(wǎng)絡(luò)模型5. 深度學(xué)習(xí)6. 參考內(nèi)容目前,深度學(xué)習(xí)(Deep Learning,簡(jiǎn)稱DL)在算法領(lǐng)域可謂是大紅大紫,現(xiàn)在不只是互聯(lián)網(wǎng)、人工智能,生活中的各大領(lǐng)域都...
...測(cè)領(lǐng)域的深度學(xué)習(xí)方法主要分為兩類:two stage的目標(biāo)檢測(cè)算法;one stage的目標(biāo)檢測(cè)算法。前者是先由算法生成一系列作為樣本的候選框,再通過卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行樣本分類;后者則不用產(chǎn)生候選框,直接將目標(biāo)邊框定位的問題轉(zhuǎn)...
起步 神經(jīng)網(wǎng)絡(luò)算法( Neural Network )是機(jī)器學(xué)習(xí)中非常非常重要的算法。這是整個(gè)深度學(xué)習(xí)的核心算法,深度學(xué)習(xí)就是根據(jù)神經(jīng)網(wǎng)絡(luò)算法進(jìn)行的一個(gè)延伸。理解這個(gè)算法的是怎么工作也能為后續(xù)的學(xué)習(xí)打下一個(gè)很好的基礎(chǔ)。 背景...
電影分析——K近鄰算法 周末,小迪與女朋友小西走出電影院,回味著剛剛看過的電影。 小迪:剛剛的電影很精彩,打斗場(chǎng)景非常真實(shí),又是一部?jī)?yōu)秀的動(dòng)作片! 小西:是嗎?我怎么感覺這是一部愛情片呢?真心被男主女主...
ChatGPT和Sora等AI大模型應(yīng)用,將AI大模型和算力需求的熱度不斷帶上新的臺(tái)階。哪里可以獲得...
大模型的訓(xùn)練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關(guān)性能圖表。同時(shí)根據(jù)訓(xùn)練、推理能力由高到低做了...