摘要:本項(xiàng)目使用網(wǎng)絡(luò)上收集的對聯(lián)數(shù)據(jù)集地址作為訓(xùn)練數(shù)據(jù),運(yùn)用注意力機(jī)制網(wǎng)絡(luò)完成了根據(jù)上聯(lián)對下聯(lián)的任務(wù)。這種方式在一定程度上降低了輸出對位置的敏感性。而機(jī)制正是為了彌補(bǔ)這一缺陷而設(shè)計(jì)的。該類中有兩個(gè)方法,分別在訓(xùn)練和預(yù)測時(shí)應(yīng)用。
桃符早易朱紅紙,楊柳輕搖翡翠群 ——FlyAI Couplets
循環(huán)神經(jīng)網(wǎng)絡(luò)最重要的特點(diǎn)就是可以將序列作為輸入和輸出,而對聯(lián)的上聯(lián)和下聯(lián)都是典型的序列文字,那么,能否使用神經(jīng)網(wǎng)絡(luò)進(jìn)行對對聯(lián)呢?答案是肯定的。本項(xiàng)目使用網(wǎng)絡(luò)上收集的對聯(lián)數(shù)據(jù)集地址作為訓(xùn)練數(shù)據(jù),運(yùn)用Seq2Seq + 注意力機(jī)制網(wǎng)絡(luò)完成了根據(jù)上聯(lián)對下聯(lián)的任務(wù)。
項(xiàng)目流程數(shù)據(jù)處理
Seq2Seq + Attention 模型解讀
模型代碼實(shí)現(xiàn)
訓(xùn)練神經(jīng)網(wǎng)絡(luò)
數(shù)據(jù)處理
在原始數(shù)據(jù)集中,對聯(lián)中每個(gè)漢字使用空格進(jìn)行分割,格式如下所示:
? 室 內(nèi) 崇 蘭 映 日,林 間 修 竹 當(dāng) 風(fēng) ? 翠 岸 青 荷 , 琴 曲 瀟 瀟 情 輾 轉(zhuǎn),寒 山 古 月 , 風(fēng) 聲 瑟 瑟 意 彷 徨
由于每個(gè)漢字表示一個(gè)單一的詞,因此不需要對原始數(shù)據(jù)進(jìn)行分詞。在獲取原始數(shù)據(jù)之后,需要?jiǎng)?chuàng)建兩個(gè)字典,分別是字到詞向量的字典和字到詞袋的字典,這樣做是為了將詞向量輸入到網(wǎng)絡(luò)中,而輸出處使用詞袋進(jìn)行分類。在詞袋模型中,添加三個(gè)關(guān)鍵字 " “ ", " ” " 和 " ~ " ,分別代表輸入輸出的起始,結(jié)束和空白處的補(bǔ)零,其關(guān)鍵字分別為1,2,0。
class Processor(Base): ## Processor是進(jìn)行數(shù)據(jù)處理的類 def __init__(self): super(Processor, self).__init__() embedding_path = os.path.join(DATA_PATH, "embedding.json") ##加載詞向量字典 words_list_path = os.path.join(DATA_PATH, "words.json") ## 加載詞袋列表 with open(embedding_path, encoding="utf-8") as f: self.vocab = json.loads(f.read()) with open(words_list_path, encoding="utf-8") as f: word_list = json.loads(f.read()) self.word2ix = {w:i for i,w in enumerate(word_list, start = 3)} self.word2ix["“"] = 1 ##句子開頭為1 self.word2ix["”"] = 2 ##句子結(jié)尾為2 self.word2ix["~"] = 0 ##padding的內(nèi)容為0 self.ix2word = {i:w for w,i in self.word2ix.items()} self.max_sts_len = 40 ##最大序列長度
def input_x(self, upper): ##upper為輸入的上聯(lián) word_list = [] #review = upper.strip().split(" ") review = ["“"] + upper.strip().split(" ") + ["”"] ##開頭加符號1,結(jié)束加符號2 for word in review: embedding_vector = self.vocab.get(word) if embedding_vector is not None: if len(embedding_vector) == 200: # 給出現(xiàn)在編碼詞典中的詞匯編碼 embedding_vector = list(map(lambda x: float(x),embedding_vector)) ## convert element type from str to float in the list word_list.append(embedding_vector) if len(word_list) >= self.max_sts_len: word_list = word_list[:self.max_sts_len] origanal_len = self.max_sts_len else: origanal_len = len(word_list) for i in range(len(word_list), self.max_sts_len): word_list.append([0 for j in range(200)]) ## 詞向量維度為200 word_list.append([origanal_len for j in range(200)]) ## 最后一行元素為句子實(shí)際長度 word_list = np.stack(word_list) return word_list
def input_y(self, lower): word_list = [1] ##開頭加起始符號1 for word in lower: word_idx = self.word2ix.get(word) if word_idx is not None: word_list.append(word_idx) word_list.append(2) ##結(jié)束加終止符號2 origanal_len = len(word_list) if len(word_list) >= self.max_sts_len: origanal_len = self.max_sts_len word_list = word_list[:self.max_sts_len] else: origanal_len = len(word_list) for i in range(len(word_list), self.max_sts_len): word_list.append(0) ## 不夠長度則補(bǔ)0 word_list.append(origanal_len) ##最后一個(gè)元素為句子長度 return word_list
Seq2Seq + Attention 模型解讀
Seq2Seq 模型可以被認(rèn)為是一種由編碼器和解碼器組成的翻譯器,其結(jié)構(gòu)如下圖所示:
編碼器(Encoder)和解碼器(Decoder)通常使用RNN構(gòu)成,為提高效果,RNN通常使用LSTM或RNN,在上圖中的RNN即是使用LSTM。Encoder將輸入翻譯為中間狀態(tài)C,而Decoder將中間狀態(tài)翻譯為輸出。序列中每一個(gè)時(shí)刻的輸出由的隱含層狀態(tài),前一個(gè)時(shí)刻的輸出值及中間狀態(tài)C共同決定。
在早先的Seq2Seq模型中,中間狀態(tài)C僅由最終的隱層決定,也就是說,源輸入中的每個(gè)單詞對C的重要性是一樣的。這種方式在一定程度上降低了輸出對位置的敏感性。而Attention機(jī)制正是為了彌補(bǔ)這一缺陷而設(shè)計(jì)的。在Attention機(jī)制中,中間狀態(tài)C具有了位置信息,即每個(gè)位置的C都不相同,第i個(gè)位置的C由下面的公式?jīng)Q定:
公式中,Ci代表第i個(gè)位置的中間狀態(tài)C,Lx代表輸入序列的全部長度,hj是第j個(gè)位置的Encoder隱層輸出,而aij為第i個(gè)C與第j個(gè)h之間的權(quán)重。通過這種方式,對于每個(gè)位置的源輸入就產(chǎn)生了不同的C,也就是實(shí)現(xiàn)了對不同位置單詞的‘注意力’。權(quán)重aij有很多的計(jì)算方式,本項(xiàng)目中使用使用小型神經(jīng)網(wǎng)絡(luò)進(jìn)行映射的方式產(chǎn)生aij。
模型代碼實(shí)現(xiàn)
Encoder的結(jié)構(gòu)非常簡單,是一個(gè)簡單的RNN單元,由于本項(xiàng)目中輸入數(shù)據(jù)是已經(jīng)編碼好的詞向量,因此不需要使用nn.Embedding() 對input進(jìn)行編碼。
class Encoder(nn.Module): def __init__(self, embedding_dim, hidden_dim, num_layers=2, dropout=0.2): super().__init__() self.embedding_dim = embedding_dim #詞向量維度,本項(xiàng)目中是200維 self.hidden_dim = hidden_dim #RNN隱層維度 self.num_layers = num_layers #RNN層數(shù) self.dropout = dropout #dropout self.rnn = nn.GRU(embedding_dim, hidden_dim, num_layers=num_layers, dropout=dropout) self.dropout = nn.Dropout(dropout) #dropout層 def forward(self, input_seqs, input_lengths, hidden=None): # src = [sent len, batch size] embedded = self.dropout(input_seqs) # embedded = [sent len, batch size, emb dim] packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths) #將輸入轉(zhuǎn)換成torch中的pack格式,使得RNN輸入的是真實(shí)長度的句子而非padding后的 #outputs, hidden = self.rnn(packed, hidden) outputs, hidden = self.rnn(packed) outputs, output_lengths = torch.nn.utils.rnn.pad_packed_sequence(outputs) # outputs, hidden = self.rnn(embedded, hidden) # outputs = [sent len, batch size, hid dim * n directions] # hidden = [n layers, batch size, hid dim] # outputs are always from the last layer return outputs, hidden
Attentation權(quán)重的計(jì)算方式主要有三種,本項(xiàng)目中使用concatenate的方式進(jìn)行注意力權(quán)重的運(yùn)算。代碼實(shí)現(xiàn)如下:
class Attention(nn.Module): def __init__(self, hidden_dim): super(Attention, self).__init__() self.hidden_dim = hidden_dim self.attn = nn.Linear(self.hidden_dim * 2, hidden_dim) self.v = nn.Parameter(torch.rand(hidden_dim)) self.v.data.normal_(mean=0, std=1. / np.sqrt(self.v.size(0))) def forward(self, hidden, encoder_outputs): # encoder_outputs:(seq_len, batch_size, hidden_size) # hidden:(num_layers * num_directions, batch_size, hidden_size) max_len = encoder_outputs.size(0) h = hidden[-1].repeat(max_len, 1, 1) # (seq_len, batch_size, hidden_size) attn_energies = self.score(h, encoder_outputs) # compute attention score return F.softmax(attn_energies, dim=1) # normalize with softmax def score(self, hidden, encoder_outputs): # (seq_len, batch_size, 2*hidden_size)-> (seq_len, batch_size, hidden_size) energy = torch.tanh(self.attn(torch.cat([hidden, encoder_outputs], 2))) energy = energy.permute(1, 2, 0) # (batch_size, hidden_size, seq_len) v = self.v.repeat(encoder_outputs.size(1), 1).unsqueeze(1) # (batch_size, 1, hidden_size) energy = torch.bmm(v, energy) # (batch_size, 1, seq_len) return energy.squeeze(1) # (batch_size, seq_len)
Decoder同樣是一個(gè)RNN網(wǎng)絡(luò),它的輸入有三個(gè),分別是句子初始值,hidden tensor 和Encoder的output tensor。在本項(xiàng)目中句子的初始值為‘“’代表的數(shù)字1。由于初始值tensor使用的是詞袋編碼,需要將詞袋索引也映射到詞向量維度,這樣才能與其他tensor合并。完整的Decoder代碼如下所示:
class Decoder(nn.Module): def __init__(self, output_dim, embedding_dim, hidden_dim, num_layers=2, dropout=0.2): super().__init__() self.embedding_dim = embedding_dim ##編碼維度 self.hid_dim = hidden_dim ##RNN隱層單元數(shù) self.output_dim = output_dim ##詞袋大小 self.num_layers = num_layers ##RNN層數(shù) self.dropout = dropout self.embedding = nn.Embedding(output_dim, embedding_dim) self.attention = Attention(hidden_dim) self.rnn = nn.GRU(embedding_dim + hidden_dim, hidden_dim, num_layers=num_layers, dropout=dropout) self.out = nn.Linear(embedding_dim + hidden_dim * 2, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, input, hidden, encoder_outputs): # input = [bsz] # hidden = [n layers * n directions, batch size, hid dim] # encoder_outputs = [sent len, batch size, hid dim * n directions] input = input.unsqueeze(0) # input = [1, bsz] embedded = self.dropout(self.embedding(input)) # embedded = [1, bsz, emb dim] attn_weight = self.attention(hidden, encoder_outputs) # (batch_size, seq_len) context = attn_weight.unsqueeze(1).bmm(encoder_outputs.transpose(0, 1)).transpose(0, 1) # (batch_size, 1, hidden_dim * n_directions) # (1, batch_size, hidden_dim * n_directions) emb_con = torch.cat((embedded, context), dim=2) # emb_con = [1, bsz, emb dim + hid dim] _, hidden = self.rnn(emb_con, hidden) # outputs = [sent len, batch size, hid dim * n directions] # hidden = [n layers * n directions, batch size, hid dim] output = torch.cat((embedded.squeeze(0), hidden[-1], context.squeeze(0)), dim=1) output = F.log_softmax(self.out(output), 1) # outputs = [sent len, batch size, vocab_size] return output, hidden, attn_weight
在此之上,定義一個(gè)完整的Seq2Seq類,將Encoder和Decoder結(jié)合起來。在該類中,有一個(gè)叫做teacher_forcing_ratio的參數(shù),作用為在訓(xùn)練過程中強(qiáng)制使得網(wǎng)絡(luò)模型的輸出在一定概率下更改為ground truth,這樣在反向傳播時(shí)有利于模型的收斂。該類中有兩個(gè)方法,分別在訓(xùn)練和預(yù)測時(shí)應(yīng)用。Seq2Seq類名稱為Net,代碼如下所示:
class Net(nn.Module): def __init__(self, encoder, decoder, device, teacher_forcing_ratio=0.5): super().__init__() self.encoder = encoder.to(device) self.decoder = decoder.to(device) self.device = device self.teacher_forcing_ratio = teacher_forcing_ratio def forward(self, src_seqs, src_lengths, trg_seqs): # src_seqs = [sent len, batch size] # trg_seqs = [sent len, batch size] batch_size = src_seqs.shape[1] max_len = trg_seqs.shape[0] trg_vocab_size = self.decoder.output_dim # tensor to store decoder outputs outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device) # hidden used as the initial hidden state of the decoder # encoder_outputs used to compute context encoder_outputs, hidden = self.encoder(src_seqs, src_lengths) # first input to the decoder is thetokens output = trg_seqs[0, :] for t in range(1, max_len): # skip sos output, hidden, _ = self.decoder(output, hidden, encoder_outputs) outputs[t] = output teacher_force = random.random() < self.teacher_forcing_ratio output = (trg_seqs[t] if teacher_force else output.max(1)[1]) return outputs def predict(self, src_seqs, src_lengths, max_trg_len=30, start_ix=1): max_src_len = src_seqs.shape[0] batch_size = src_seqs.shape[1] trg_vocab_size = self.decoder.output_dim outputs = torch.zeros(max_trg_len, batch_size, trg_vocab_size).to(self.device) encoder_outputs, hidden = self.encoder(src_seqs, src_lengths) output = torch.LongTensor([start_ix] * batch_size).to(self.device) attn_weights = torch.zeros((max_trg_len, batch_size, max_src_len)) for t in range(1, max_trg_len): output, hidden, attn_weight = self.decoder(output, hidden, encoder_outputs) outputs[t] = output output = output.max(1)[1] #attn_weights[t] = attn_weight return outputs, attn_weights
訓(xùn)練神經(jīng)網(wǎng)絡(luò)
訓(xùn)練過程包括定義損失函數(shù),優(yōu)化器,數(shù)據(jù)處理,梯隊(duì)下降等過程。由于網(wǎng)絡(luò)中tensor型狀為(sentence len, batch, embedding), 而加載的數(shù)據(jù)形狀為(batch, sentence len, embedding),因此有些地方需要進(jìn)行轉(zhuǎn)置。
定義網(wǎng)絡(luò),輔助類等代碼如下所示:
# 數(shù)據(jù)獲取輔助類 data = Dataset() en=Encoder(200,64) ##詞向量維度200,rnn隱單元64 de=Decoder(9133,200,64) ##詞袋大小9133,詞向量維度200,rnn隱單元64 network = Net(en,de,device) ##定義Seq2Seq實(shí)例 loss_fn = nn.CrossEntropyLoss() ##使用交叉熵?fù)p失函數(shù) optimizer = Adam(network.parameters()) ##使用Adam優(yōu)化器 model = Model(data)
lowest_loss = 10 # 得到訓(xùn)練和測試的數(shù)據(jù) for epoch in range(args.EPOCHS): network.train() # 得到訓(xùn)練和測試的數(shù)據(jù) x_train, y_train, x_test, y_test = data.next_batch(args.BATCH) # 讀取數(shù)據(jù); shape:(sen_len,batch,embedding) #x_train shape: (batch,sen_len,embed_dim) #y_train shape: (batch,sen_len) batch_len = y_train.shape[0] #input_lengths = [30 for i in range(batch_len)] ## batch內(nèi)每個(gè)句子的長度 input_lengths = x_train[:,-1,0] input_lengths = input_lengths.tolist() #input_lengths = list(map(lambda x: int(x),input_lengths)) input_lengths = [int(x) for x in input_lengths] y_lengths = y_train[:,-1] y_lengths = y_lengths.tolist() x_train = x_train[:,:-1,:] ## 除去長度信息 x_train = torch.from_numpy(x_train) #shape:(batch,sen_len,embedding) x_train = x_train.float().to(device) y_train = y_train[:,:-1] ## 除去長度信息 y_train = torch.from_numpy(y_train) #shape:(batch,sen_len) y_train = torch.LongTensor(y_train) y_train = y_train.to(device) seq_pairs = sorted(zip(x_train.contiguous(), y_train.contiguous(),input_lengths), key=lambda x: x[2], reverse=True) #input_lengths = sorted(input_lengths, key=lambda x: input_lengths, reverse=True) x_train, y_train,input_lengths = zip(*seq_pairs) x_train = torch.stack(x_train,dim=0).permute(1,0,2).contiguous() y_train = torch.stack(y_train,dim=0).permute(1,0).contiguous() outputs = network(x_train,input_lengths,y_train) #_, prediction = torch.max(outputs.data, 2) optimizer.zero_grad() outputs = outputs.float() # calculate the loss according to labels loss = loss_fn(outputs.view(-1, outputs.shape[2]), y_train.view(-1)) # backward transmit loss loss.backward() # adjust parameters using Adam optimizer.step() print(loss) # 若測試準(zhǔn)確率高于當(dāng)前最高準(zhǔn)確率,則保存模型 if loss < lowest_loss: lowest_loss = loss model.save_model(network, MODEL_PATH, overwrite=True) print("step %d, best lowest_loss %g" % (epoch, lowest_loss)) print(str(epoch) + "/" + str(args.EPOCHS))
小結(jié)
通過使用Seq2Seq + Attention模型,我們完成了使用神經(jīng)網(wǎng)絡(luò)對對聯(lián)的任務(wù)。經(jīng)過十余個(gè)周期的訓(xùn)練后,神經(jīng)網(wǎng)絡(luò)將會對出與上聯(lián)字?jǐn)?shù)相同的下聯(lián),但是,若要對出工整的對聯(lián),還需訓(xùn)練更多的周期,讀者也可以嘗試其他的方法來提高對仗的工整性。
文章版權(quán)歸作者所有,未經(jīng)允許請勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/19915.html
摘要:本項(xiàng)目使用網(wǎng)絡(luò)上收集的對聯(lián)數(shù)據(jù)集地址作為訓(xùn)練數(shù)據(jù),運(yùn)用注意力機(jī)制網(wǎng)絡(luò)完成了根據(jù)上聯(lián)對下聯(lián)的任務(wù)。這種方式在一定程度上降低了輸出對位置的敏感性。而機(jī)制正是為了彌補(bǔ)這一缺陷而設(shè)計(jì)的。該類中有兩個(gè)方法,分別在訓(xùn)練和預(yù)測時(shí)應(yīng)用。 桃符早易朱紅紙,楊柳輕搖翡翠群 ——FlyAI Couplets 體驗(yàn)對對聯(lián)Demo: https://www.flyai.com/couplets s...
摘要:導(dǎo)讀工程師可用使用很多工具庫來進(jìn)行自然語言處理,比如等等,在這么多選擇中,也許是所有人的推薦。版的終于發(fā)布了,它是世界上最快的自然語言處理庫。在本文中,我們將使用,因?yàn)樗歉軞g迎的深度學(xué)習(xí)庫。 導(dǎo)讀:工程師可用使用很多工具庫來進(jìn)行自然語言處理,比如 NLTK/CoreNLP/OpenNLP/Rosette/OpenIE 等等,在這么多選擇中,spaCy 也許是所有人的推薦。1.0 版的 s...
摘要:時(shí)間永遠(yuǎn)都過得那么快,一晃從年注冊,到現(xiàn)在已經(jīng)過去了年那些被我藏在收藏夾吃灰的文章,已經(jīng)太多了,是時(shí)候把他們整理一下了。那是因?yàn)槭詹貖A太亂,橡皮擦給設(shè)置私密了,不收拾不好看呀。 ...
閱讀 988·2021-11-22 09:34
閱讀 2169·2021-11-11 16:54
閱讀 2206·2021-09-27 14:00
閱讀 951·2019-08-30 15:55
閱讀 1537·2019-08-29 12:46
閱讀 611·2019-08-26 18:42
閱讀 649·2019-08-26 13:31
閱讀 3191·2019-08-26 11:52