摘要:本文介紹了包括等在內的一系列編程語言的深度學習庫。是一個在中用于帶有神經網絡的深度學習的庫,它通過使用帶有的加速。是一個用和開發的深度學習庫。是第一個為和編寫的消費級開元分布式深度學習庫。它帶有豐富的作為機器學習庫一部分的深度學習庫。
本文介紹了包括 Python、Java、Haskell等在內的一系列編程語言的深度學習庫。
Python
Theano 是一種用于使用數列來定義和評估數學表達的 Python 庫。它可以讓 Python 中深度學習算法的編寫更為簡單。很多其他的庫是以 Theano 為基礎開發的:
Keras 是類似 Torch 的一個精簡的,高度模塊化的神經網絡庫。Theano 在底層幫助其優化 CPU 和 GPU 運行中的張量操作。
Pylearn2 是一個引用大量如隨機梯度(Stochastic Gradient)這樣的模型和訓練算法的庫。它在深度學習中被廣泛采用,這個庫也是以 Theano 為基礎的。
Lasagne 是一個輕量級的庫,它可以在 Theano 中建立和訓練神經網絡。它簡單、透明、模塊化、實用、專一而克制。
Blocks 是一種幫助你在 Theano 之上建立神經網絡模型的框架。
Caffe 是一種以表達清晰、高速和模塊化為理念建立起來的深度學習框架。它是由伯克利視覺和學習中心(BVLC)和網上社區貢獻者共同開發的。谷歌的 DeepDream 人工智能圖像處理程序正是建立在 Caffe 框架之上。這個框架是一個 BSD 許可的帶有 Python 接口的 C++庫。
nolearn 包含大量其他神經網絡庫中的包裝器和抽象(wrappers and abstractions),其中最值得注意的是 Lasagne,其中也包含一些機器學習的實用模塊。
Genism 是一個部署在 Python 編程語言中的深度學習工具包,用于通過高效的算法處理大型文本集。
Chainer 連接深度學習中的算法與實現,它強勁、靈活而敏銳,是一種用于深度學習的靈活的框架。
deepnet 是一種基于 GPU 的深度學習算法的 Python 實現,比如:前饋神經網絡、受限玻爾茲曼機、深度信念網絡、自編碼器、深度玻爾茲曼機和卷積神經網絡。
Hebel 是一個在 Python 中用于帶有神經網絡的深度學習的庫,它通過 PyCUDA 使用帶有 CUDA 的 GPU 加速。它可實現大多數目前最重要的神經網絡模型,提供了多種不同的激活函數和訓練方式,如動量,Nesterov 動量,退出(dropout)和 前期停止(early stopping)。
CXXNET 是一種快速,簡明的分布式深度學習框架,它以 MShadow 為基礎。它是輕量級可擴展的 C++/CUDA 神經網絡工具包,同時擁有友好的 Python/Matlab 界面,可供機器學習的訓練和預測使用。
DeepPy 是一種建立在 Mumpy 之上的 Python 化的深度學習框架。
DeepLearning 是一個用 C++和 Python 開發的深度學習庫。
Neon 是 Nervana 公司基于 Python 開發的深度學習框架。
C++
eblearn 是一個機器學習的開源 C++庫,由紐約大學機器學習實驗室的 Yann LeCun 牽頭研發。尤其是,按照 GUI、演示和教程來部署的帶有基于能量的模型的卷積神經網絡。
SINGA 被設計用來進行已有系統中分布式訓練算法的普通實現。它由 Apache Software Foundation 提供支持。
NVIDIA DIGITS 是一個新的用于開發、訓練和可視化神經網絡系統。它把深度學習放進了基于瀏覽器的界面中,讓數據分析師和研究人員可以快速設計較好的深度學習神經網絡(DNN)來獲取實時的網絡行為可視化數據。
Intel? Deep Learning Framework 為英特爾的平臺提供了統一的框架來加速深度卷積神經網絡。
Java
N-Dimensional Arrays for Java (ND4J) 是一種為 JVM 設計的科學計算庫。它們被應用在生產環境中,這就意味著路徑被設計成可以最小的 RAM 內存需求來快速運行。
Deeplearning4j 是第一個為 Java 和 Scala 編寫的消費級開元分布式深度學習庫。它被設計成在商業環境中使用,而非研究工具。
Encog 是一種先進的機器學習框架,支持支持向量機(Support Vector Machines),人工神經網絡(Artificial Neural Networks),基因編程(Genetic Programming),貝葉斯網絡(Bayesian Networks),隱馬爾科夫模型(Hidden Markov Models)和 遺傳算法(Genetic Algorithms)。
JavaScript
Convent.js 是一種 Javascript 中用于深度學習模型(主要是神經網絡)的庫。完全在瀏覽器中使用,不需要開發工具,不需要編譯器,不需要安裝,也不需要 GPU 的支持,簡單易用。
Lua
Torch 是一種科學計算框架,可支持多種計算機學習算法。
Julia
Mocha 用于 Julia 的一種深度學習框架,其靈感來源于 C++框架 Caffe。在 Mocha 中通用的隨機梯度求解器和公共層的有效實現可以被用于訓練深度/淺層(卷積)神經網絡,其帶有通過(堆疊的)自動解碼器的(可選的)無監督的預訓練。其較大特點包括:帶有模塊化架構、 高層面的接口、便攜性與速度、兼容性等等。
Lisp
Lush(Lisp Universal Shell)是一種為研究人員、試驗者以及對大規模數值和圖形應用感興趣的工程師設計的、面向對象的編程語言。它帶有豐富的作為機器學習庫一部分的深度學習庫。
Haskell
DNNGraph 是一個用 Haskell 編寫的深度神經網絡生成 DSL。
.NET
Accord.NET 是一種.NET 機器學習框架,包含聲音和圖像處理庫,它完全由 C# 編寫。它是一種為開發生產級的計算機視覺、計算機聽覺、信號處理和統計應用而設計的完整框架。
R
darch 包可以用于建立多層神經網絡(深層結構)。其中的訓練方式包括使用對比發散法進行提前訓練,或使用通常的訓練方法(如反向傳播和共軛梯度)進行一些微調。
deepnet 實現了一些深度學習架構和神經網絡算法,包括 BP、RBM、DBN、深度自編碼器等等。
歡迎加入本站公開興趣群商業智能與數據分析群
興趣范圍包括各種讓數據產生價值的辦法,實際應用案例分享與討論,分析工具,ETL工具,數據倉庫,數據挖掘工具,報表系統等全方位知識
QQ群:81035754
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/4414.html
摘要:入門,第一個這是一門很新的語言,年前后正式公布,算起來是比較年輕的編程語言了,更重要的是它是面向程序員的函數式編程語言,它的代碼運行在之上。它通過編輯類工具,帶來了先進的編輯體驗,增強了語言服務。 showImg(https://segmentfault.com/img/bV1xdq?w=900&h=385); 新的一年不知不覺已經到來了,總結過去的 2017,相信小伙們一定有很多收獲...
摘要:入門,第一個這是一門很新的語言,年前后正式公布,算起來是比較年輕的編程語言了,更重要的是它是面向程序員的函數式編程語言,它的代碼運行在之上。它通過編輯類工具,帶來了先進的編輯體驗,增強了語言服務。 showImg(https://segmentfault.com/img/bV1xdq?w=900&h=385); 新的一年不知不覺已經到來了,總結過去的 2017,相信小伙們一定有很多收獲...
摘要:入門,第一個這是一門很新的語言,年前后正式公布,算起來是比較年輕的編程語言了,更重要的是它是面向程序員的函數式編程語言,它的代碼運行在之上。它通過編輯類工具,帶來了先進的編輯體驗,增強了語言服務。 showImg(https://segmentfault.com/img/bV1xdq?w=900&h=385); 新的一年不知不覺已經到來了,總結過去的 2017,相信小伙們一定有很多收獲...
摘要:本文介紹了包括等在內的一系列編程語言的深度學習庫。是一個部署在編程語言中的深度學習工具包,用于通過高效的算法處理大型文本集。是公司基于開發的深度學習框架。是第一個為和編寫的消費級開元分布式深度學習庫。 本文介紹了包括 Python、Java、Haskell等在內的一系列編程語言的深度學習庫。PythonTheano 是一種用于使用數列來定義和評估數學表達的 Python 庫。它可以讓 Pyt...
摘要:是你學習從入門到專家必備的學習路線和優質學習資源。的數學基礎最主要是高等數學線性代數概率論與數理統計三門課程,這三門課程是本科必修的。其作為機器學習的入門和進階資料非常適合。書籍介紹深度學習通常又被稱為花書,深度學習領域最經典的暢銷書。 showImg(https://segmentfault.com/img/remote/1460000019011569); 【導讀】本文由知名開源平...
閱讀 3208·2021-11-25 09:43
閱讀 3212·2021-11-23 09:51
閱讀 3525·2019-08-30 13:08
閱讀 1578·2019-08-29 12:48
閱讀 3602·2019-08-29 12:26
閱讀 405·2019-08-28 18:16
閱讀 2571·2019-08-26 13:45
閱讀 2437·2019-08-26 12:15