摘要:存放過程中的所有集合為所有的結尾,則順序存放這個結尾對應的中的所有存放同一個循環的新加入的,在下一個循環再依次對其中元素進行進一步的把首個字符串放入新,再將放入,并將鍵值對放入,進行初始化
Problem
Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the dictionary
All words have the same length.
All words contain only lowercase alphabetic characters.
Given:
start = "hit" end = "cog" dict = ["hot","dot","dog","lot","log"]
Return
[ ["hit","hot","dot","dog","cog"], ["hit","hot","lot","log","cog"] ]Solution DFS+BFS Updated 2018-11
class Solution { public ListSolution Note> findLadders(String start, String end, List
wordList) { List > res = new ArrayList<>(); Set
dict = new HashSet<>(wordList); if (!dict.contains(end)) return res; //save shortest distance from start to each node Map distanceMap = new HashMap<>(); //save all the nodes can be transformed from each node Map > neighborMap = new HashMap<>(); dict.add(start); //use bfs to: find the shortest distance; update neighborMap and distanceMap bfs(start, end, dict, neighborMap, distanceMap); //use dfs to: output all the paths with the shortest distance dfs(start, end, neighborMap, distanceMap, new ArrayList<>(), res); return res; } private void bfs(String start, String end, Set dict, Map > neighborMap, Map distanceMap) { for (String str: dict) { neighborMap.put(str, new ArrayList<>()); } Deque queue = new ArrayDeque<>(); queue.offer(start); distanceMap.put(start, 0); while (!queue.isEmpty()) { int size = queue.size(); boolean foundEnd = false; for (int i = 0; i < size; i++) { String cur = queue.poll(); int curDist = distanceMap.get(cur); List neighbors = getNeighbors(dict, cur); for (String neighbor: neighbors) { neighborMap.get(cur).add(neighbor); if (!distanceMap.containsKey(neighbor)) { distanceMap.put(neighbor, curDist+1); if (neighbor.equals(end)) foundEnd = true; else queue.offer(neighbor); } } } if (foundEnd) break; } } private void dfs(String start, String end, Map > neighborMap, Map distanceMap, List temp, List > res) { if (start.equals(end)) { temp.add(start); res.add(new ArrayList<>(temp)); temp.remove(temp.size()-1); } for (String neighbor: neighborMap.get(start)) { temp.add(start); if (distanceMap.get(neighbor) == distanceMap.get(start)+1) { dfs(neighbor, end, neighborMap, distanceMap, temp, res); } temp.remove(temp.size()-1); } } private List
getNeighbors(Set dict, String str) { List res = new ArrayList<>(); for (int i = 0; i < str.length(); i++) { StringBuilder sb = new StringBuilder(str); for (char ch = "a"; ch <= "z"; ch++) { sb.setCharAt(i, ch); String neighbor = sb.toString(); if (dict.contains(neighbor)) res.add(neighbor); } } return res; } }
result: 存放transformation過程中的所有List
map: key為所有transformation的結尾String,value則順序存放這個結尾String對應的transformation中的所有String
queue: 存放同一個循環level的新加入的String,在下一個循環再依次對其中元素進行進一步的BFS
preList: 把首個字符串start放入新List,再將List放入res,并將start-res鍵值對放入map,進行初始化
public class Solution { public List> findLadders(String start, String end, Set
dict) { List > res = new ArrayList<>(); List
preList = new ArrayList<>(); Queue queue = new LinkedList<>(); Map >> map = new HashMap<>(); preList.add(start); queue.offer(start); res.add(preList); map.put(start, res); while (!queue.isEmpty()) { String pre = queue.poll(); if (pre.equals(end)) return map.get(pre); for (int i = 0; i < pre.length(); i++) { for (int j = 0; j < 26; j++) { StringBuilder sb = new StringBuilder(pre); sb.setCharAt(i,(char) ("a"+j)); String cur = sb.toString(); if (!cur.equals(pre) && dict.contains(cur) && (!map.containsKey(cur) || map.get(pre).get(0).size()+1 <= map.get(cur).get(0).size())) { List > temp = new ArrayList<>(); for (List
p: map.get(pre)) { List curList = new ArrayList<>(p); curList.add(cur); temp.add(curList); } if (!map.containsKey(cur)) { map.put(cur, temp); queue.offer(cur); } else if (map.get(pre).get(0).size()+1 < map.get(cur).get(0).size()) map.put(cur, temp); else map.get(cur).addAll(temp); } } } } return res.get(0).size() > 1 ? res : new ArrayList >(); } }
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/65014.html
摘要:題目要求相比于,要求返回所有的最短路徑。至于如何生成該有向圖,則需要通過廣度優先算法,利用隊列來實現。將每一層的分別入棧。如果遇到則至該層結尾廣度優先算法結束。通過這種方式來防止形成圈。 題目要求 Given two words (beginWord and endWord), and a dictionarys word list, find all shortest transfo...
題目:Given two words (beginWord and endWord), and a dictionarys word list, find all shortest transformation sequence(s) from beginWord to endWord, such that: Only one letter can be changed at a timeEach...
摘要:另外,為了避免產生環路和重復計算,我們找到一個存在于字典的新的詞時,就要把它從字典中移去。代碼用來記錄跳數控制來確保一次循環只計算同一層的節點,有點像二叉樹遍歷循環這個詞從第一位字母到最后一位字母循環這一位被替換成個其他字母的情況 Word Ladder Given two words (beginWord and endWord), and a dictionary, find t...
摘要:但是這種要遍歷所有的情況,哪怕是已經超過最小操作次數的情況,導致代碼超時。其實從另一個角度來說,這道題可以看做是廣度優先算法的一個展示。按上文中的題目為例,可以將廣度優先算法寫成以下形式。 題目要求 Given two words (beginWord and endWord), and a dictionarys word list, find the length of short...
摘要:使用,利用其按層次操作的性質,可以得到最優解。這樣可以保證這一層被完全遍歷。每次循環取出的元素存為新的字符串。一旦找到和相同的字符串,就返回轉換序列長度操作層數,即。 Problem Given two words (start and end), and a dictionary, find the length of shortest transformation sequence...
閱讀 2194·2021-11-18 10:02
閱讀 3298·2021-11-11 16:55
閱讀 2702·2021-09-14 18:02
閱讀 2435·2021-09-04 16:41
閱讀 2071·2021-09-04 16:40
閱讀 1191·2019-08-30 15:56
閱讀 2222·2019-08-30 15:54
閱讀 3171·2019-08-30 14:15