摘要:題目要求相比于,要求返回所有的最短路徑。至于如何生成該有向圖,則需要通過廣度優先算法,利用隊列來實現。將每一層的分別入棧。如果遇到則至該層結尾廣度優先算法結束。通過這種方式來防止形成圈。
題目要求
Given two words (beginWord and endWord), and a dictionary"s word list, find all shortest transformation sequence(s) from beginWord to endWord, such that: Only one letter can be changed at a time Each transformed word must exist in the word list. Note that beginWord is not a transformed word. For example, Given: beginWord = "hit" endWord = "cog" wordList = ["hot","dot","dog","lot","log","cog"] Return [ ["hit","hot","dot","dog","cog"], ["hit","hot","lot","log","cog"] ] Note: Return an empty list if there is no such transformation sequence. All words have the same length. All words contain only lowercase alphabetic characters. You may assume no duplicates in the word list. Yo
u may assume beginWord and endWord are non-empty and are not the same.
相比于Word Ladder I,II要求返回所有的最短路徑。
思路與代碼在繼續往下看之前,請先參考I的這篇博客
首先我們再來查看一下題目中的例子。其實我們可以將路徑化為有向圖,然后將有向圖中從beginWord至endWord的最短路徑全部枚舉出來。這里需要考慮最合適的數據結構。graph的話我們通過Map
這里有一個可以提高的計算效率的數據結構。在一開始,我通過一個list來記錄所有上層已經遍歷過的string。通過這種方式來防止形成圈。但是這樣的形式造成的代碼的超時,所以換成了Map
public List> findLadders(String beginWord, String endWord, List
wordList) { Map ladder = new HashMap (); for(int i = 0 ; i q = new LinkedList (); int minStep = Integer.MAX_VALUE; if(beginWord!=null){ q.offer(beginWord); while(!q.isEmpty()){ String current = q.poll(); int step = ladder.get(current)+1; if(step>minStep) break; for (int i = 0; i < current.length(); i++){ StringBuilder sb = new StringBuilder(current); for (char ch="a"; ch <= "z"; ch++){ sb.setCharAt(i, ch); String sbs = sb.toString(); if(ladder.containsKey(sbs)){ if(step>ladder.get(sbs)) continue; else if(step list= new HashSet (); list.add(sbs); map.put(current,list); } if(sbs.equals(endWord)) minStep = step; } } } } } generatePath(beginWord, endWord, new ArrayList ()); return result; } public void generatePath(String currentWord, String endWord, List current){ current.add(currentWord); if(currentWord.equals(endWord)){ result.add(new ArrayList (current)); }else{ Set set = map.get(currentWord); if(set!=null){ for(String s : set){ generatePath(s, endWord,current); } } } current.remove(current.size()-1); }
想要了解更多開發技術,面試教程以及互聯網公司內推,歡迎關注我的微信公眾號!將會不定期的發放福利哦~
文章版權歸作者所有,未經允許請勿轉載,若此文章存在違規行為,您可以聯系管理員刪除。
轉載請注明本文地址:http://m.specialneedsforspecialkids.com/yun/67615.html
摘要:存放過程中的所有集合為所有的結尾,則順序存放這個結尾對應的中的所有存放同一個循環的新加入的,在下一個循環再依次對其中元素進行進一步的把首個字符串放入新,再將放入,并將鍵值對放入,進行初始化 Problem Given two words (start and end), and a dictionary, find all shortest transformation sequenc...
題目:Given two words (beginWord and endWord), and a dictionarys word list, find all shortest transformation sequence(s) from beginWord to endWord, such that: Only one letter can be changed at a timeEach...
摘要:另外,為了避免產生環路和重復計算,我們找到一個存在于字典的新的詞時,就要把它從字典中移去。代碼用來記錄跳數控制來確保一次循環只計算同一層的節點,有點像二叉樹遍歷循環這個詞從第一位字母到最后一位字母循環這一位被替換成個其他字母的情況 Word Ladder Given two words (beginWord and endWord), and a dictionary, find t...
摘要:但是這種要遍歷所有的情況,哪怕是已經超過最小操作次數的情況,導致代碼超時。其實從另一個角度來說,這道題可以看做是廣度優先算法的一個展示。按上文中的題目為例,可以將廣度優先算法寫成以下形式。 題目要求 Given two words (beginWord and endWord), and a dictionarys word list, find the length of short...
摘要:使用,利用其按層次操作的性質,可以得到最優解。這樣可以保證這一層被完全遍歷。每次循環取出的元素存為新的字符串。一旦找到和相同的字符串,就返回轉換序列長度操作層數,即。 Problem Given two words (start and end), and a dictionary, find the length of shortest transformation sequence...
閱讀 3648·2021-11-25 09:43
閱讀 647·2021-09-22 15:59
閱讀 1751·2021-09-06 15:00
閱讀 1776·2021-09-02 09:54
閱讀 695·2019-08-30 15:56
閱讀 1186·2019-08-29 17:14
閱讀 1846·2019-08-29 13:15
閱讀 887·2019-08-28 18:28