Complexity
Quicksort | Mergesort | Heapsort | |
---|---|---|---|
Time Complexity | O(nlogn) | O(nlogn) | O(nlogn) |
Space Complexity | O(1) | O(n) | Could be O(1) |
Quicksort is similar to MergeSort in that the sort is accomplished by dividing the array into two partitions and then sorting each partition recursively.
In Quicksort, the array is partitioned by placing all items smaller than some pivot item before that item and all items larger than the pivot item after it.
There are many different versions of Quicksort that pick pivot in different ways.
Always pick first element as pivot.
Always pick last element as pivot.
Pick a random element as pivot.
Pick median as pivot.
Implement Quicksort in Java using Arrays (Takes the last element as pivot)
public class QuickSortArray { private int partition (int arr[], int low, int high) { int pivot = arr[high]; int i = low - 1; for (int j=low; jImplement Quicksort in Java using LinkedList (Takes the median as pivot)
public class QuickSortList { public ListNode sortList(ListNode head) { if (head == null || head.next == null) { return head; } ListNode mid = findMedian(head); // O(n) ListNode leftDummy = new ListNode(0), leftTail = leftDummy; ListNode rightDummy = new ListNode(0), rightTail = rightDummy; ListNode middleDummy = new ListNode(0), middleTail = middleDummy; while (head != null) { if (head.val < mid.val) { leftTail.next = head; leftTail = head; } else if (head.val > mid.val) { rightTail.next = head; rightTail = head; } else { middleTail.next = head; middleTail = head; } head = head.next; } leftTail.next = null; middleTail.next = null; rightTail.next = null; ListNode left = sortList(leftDummy.next); ListNode right = sortList(rightDummy.next); return concat(left, middleDummy.next, right); } private ListNode findMedian(ListNode head) { ListNode slow = head, fast = head.next; while (fast != null && fast.next != null) { slow = slow.next; fast = fast.next.next; } return slow; } private ListNode concat(ListNode left, ListNode middle, ListNode right) { ListNode dummy = new ListNode(0), tail = dummy; tail.next = left; tail = getTail(tail); tail.next = middle; tail = getTail(tail); tail.next = right; tail = getTail(tail); return dummy.next; } private ListNode getTail(ListNode head) { if (head == null) { return null; } while (head.next != null) { head = head.next; } return head; } }MergesortMergesort is based on divide-and-conquer paradigm. It involves the following three steps:
Divide the array into two (or more) subarrays.
Sort each subarray (Conquer).
Merge them into one.
Implement Mergesort in Java using Arrays
public class MergeSortArray { public void sortArray (int[] arr, int left, int right) { if (left < right) { int mid = left + (right - left)/2; sortArray (arr, left, mid); sortArray (arr, mid+1, right); mergeArray (arr, left, mid, right); } } private void mergeArray (int[] arr, int left, int mid, int right) { int n1 = mid - left + 1; int n2 = right - mid; int[] L = new int[n1]; int[] R = new int[n2]; for (int i=0; i < n1; i++) { L[i] = arr[left + i]; } for (int j=0; j < n2; j++) { R[j] = arr[mid + 1 + j]; } /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = left; while (i < n1 && j < n2) { if (L[i] <= R[j]){ arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } }Implement Mergesort in Java using LinkedList
/** * Definition for ListNode. * public class ListNode { * int val; * ListNode next; * ListNode(int val) { * this.val = val; * this.next = null; * } * } */ public class MergeSortList { /** * @param head: The head of linked list. * @return: The head of the sorted linked list. */ public ListNode sortList(ListNode head) { if (head == null || head.next == null) { return head; } ListNode mid = findMid(head); ListNode right = sortList(mid.next); mid.next = null; ListNode left = sortList(head); return mergeList(left, right); } private ListNode findMid (ListNode head) { ListNode slow = head; ListNode fast = head.next; while (fast != null && fast.next != null) { slow = slow.next; fast = fast.next.next; } return slow; } private ListNode mergeList (ListNode left, ListNode right) { ListNode dummy = new ListNode(0); ListNode tail = dummy; while (left != null && right != null) { if (left.val <= right.val) { tail.next = left; left = left.next; } else { tail.next = right; right = right.next; } tail = tail.next; } if (left != null) { tail.next = left; } else { tail.next = right; } return dummy.next; } }HeapsortHeap sort is a comparison based sorting technique based on Binary Heap data structure. It is similar to selection sort where we first find the maximum element and place the maximum element at the end. We repeat the same process for remaining element.
Heap Sort Algorithm for sorting in increasing order:
Build a max heap from the input data.
At this point, the largest item is stored at the root of the heap. Replace it with the last item of the heap followed by reducing the size of heap by 1. Finally, heapify the root of tree.
Repeat above steps while size of heap is greater than 1.
Implement Heapsort in Java using Arrays
public class HeapSort { public void sort(int arr[]) { int n = arr.length; // Build heap (rearrange array) for (int i = n / 2 - 1; i >= 0; i--) heapify(arr, n, i); // One by one extract an element from heap for (int i=n-1; i>=0; i--) { // Move current root to end int temp = arr[0]; arr[0] = arr[i]; arr[i] = temp; // call max heapify on the reduced heap heapify(arr, i, 0); } } // To heapify a subtree rooted with node i which is // an index in arr[]. n is size of heap void heapify(int arr[], int n, int i) { int largest = i; // Initialize largest as root int l = 2*i + 1; // left = 2*i + 1 int r = 2*i + 2; // right = 2*i + 2 // If left child is larger than root if (l < n && arr[l] > arr[largest]) largest = l; // If right child is larger than largest so far if (r < n && arr[r] > arr[largest]) largest = r; // If largest is not root if (largest != i) { int swap = arr[i]; arr[i] = arr[largest]; arr[largest] = swap; // Recursively heapify the affected sub-tree heapify(arr, n, largest); } } }ReferencesFoundations of Algorithms, Richard E. Neapolitan, Chapter 2 Divide and Conquer
Sorting, CMU
Big-O Algorithm Complexity Cheat Sheet
Java sorting algorithms - Implementations
Merge Sort, GeeksforGeeks
Quick Sort, GeeksforGeeks
Heap Sort, GeeksforGeeks
文章版權(quán)歸作者所有,未經(jīng)允許請(qǐng)勿轉(zhuǎn)載,若此文章存在違規(guī)行為,您可以聯(lián)系管理員刪除。
轉(zhuǎn)載請(qǐng)注明本文地址:http://m.specialneedsforspecialkids.com/yun/67158.html
摘要:基礎(chǔ)構(gòu)造函數(shù)以下幾種排序算法做為方法放在構(gòu)造函數(shù)里。代碼圖解選擇排序選擇排序算法是一種原址比較排序算法。它的性能通常比其他的復(fù)雜度為的排序算法要好。代碼劃分過(guò)程圖解排序沒(méi)有定義用哪個(gè)排序算法,所以瀏覽器廠商可以自行去實(shí)現(xiàn)算法。 基礎(chǔ)構(gòu)造函數(shù) 以下幾種排序算法做為方法放在構(gòu)造函數(shù)里。 function ArrayList () { var array = []; // 交換位置...
摘要:排序的算法是歸并排序。舉個(gè)例子,的算法可以不是使用歸并排序,但是該算法一定要是穩(wěn)定的。這個(gè)類是的一部分。官方這個(gè)類只包含操作或返回集合的靜態(tài)方法。具體來(lái)說(shuō)是,第一步,先把集合轉(zhuǎn)換為數(shù)組,第二步,調(diào)用。和沒(méi)有什么區(qū)別,只是傳參有點(diǎn)不同。 Arrays 1.作用看類的名字,就知道是對(duì)數(shù)組(數(shù)據(jù)類型[])進(jìn)行各種操作。例如,排序、查找、復(fù)制等。 排序的算法是歸并排序。查找的算法是二分查找。復(fù)...
摘要:除特別標(biāo)注外,文章非原創(chuàng)插圖全部來(lái)自課程相關(guān)資源。劇透預(yù)警內(nèi)容包含大作業(yè)的關(guān)鍵問(wèn)題解法分析。為的返回值此方案下,判斷只需要對(duì)應(yīng),判斷使用結(jié)果準(zhǔn)確,判斷檢測(cè)的對(duì)應(yīng)是否為。更新此方法已確定違反的。 Princeton的算法課是目前為止我上過(guò)的最酣暢淋漓的一門課,得師如此夫復(fù)何求,在自己的記憶徹底模糊前,愿對(duì)這其中一些印象深刻的點(diǎn)做一次完整的整理和回顧,以表敬意。 注:這是一篇更關(guān)注個(gè)人努力...
閱讀 655·2021-09-24 09:48
閱讀 2499·2021-08-26 14:14
閱讀 524·2019-08-30 13:08
閱讀 1450·2019-08-29 15:22
閱讀 3084·2019-08-29 11:06
閱讀 1011·2019-08-26 18:26
閱讀 1062·2019-08-26 13:53
閱讀 2538·2019-08-26 12:21